Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Écrivez la fraction en utilisant la décomposition en fractions partielles.
Étape 2.2.1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Étape 2.2.1.1.1
Factorisez à partir de .
Étape 2.2.1.1.1.1
Élevez à la puissance .
Étape 2.2.1.1.1.2
Factorisez à partir de .
Étape 2.2.1.1.1.3
Factorisez à partir de .
Étape 2.2.1.1.1.4
Factorisez à partir de .
Étape 2.2.1.1.1.5
Multipliez par .
Étape 2.2.1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 2.2.1.1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 2.2.1.1.4
Annulez le facteur commun de .
Étape 2.2.1.1.4.1
Annulez le facteur commun.
Étape 2.2.1.1.4.2
Réécrivez l’expression.
Étape 2.2.1.1.5
Annulez le facteur commun de .
Étape 2.2.1.1.5.1
Annulez le facteur commun.
Étape 2.2.1.1.5.2
Réécrivez l’expression.
Étape 2.2.1.1.6
Simplifiez chaque terme.
Étape 2.2.1.1.6.1
Annulez le facteur commun de .
Étape 2.2.1.1.6.1.1
Annulez le facteur commun.
Étape 2.2.1.1.6.1.2
Divisez par .
Étape 2.2.1.1.6.2
Appliquez la propriété distributive.
Étape 2.2.1.1.6.3
Multipliez par .
Étape 2.2.1.1.6.4
Annulez le facteur commun de .
Étape 2.2.1.1.6.4.1
Annulez le facteur commun.
Étape 2.2.1.1.6.4.2
Divisez par .
Étape 2.2.1.1.6.5
Appliquez la propriété distributive.
Étape 2.2.1.1.6.6
Multipliez par en additionnant les exposants.
Étape 2.2.1.1.6.6.1
Déplacez .
Étape 2.2.1.1.6.6.2
Multipliez par .
Étape 2.2.1.1.7
Déplacez .
Étape 2.2.1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Étape 2.2.1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2.1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2.1.2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 2.2.1.2.4
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 2.2.1.3
Résolvez le système d’équations.
Étape 2.2.1.3.1
Réécrivez l’équation comme .
Étape 2.2.1.3.2
Réécrivez l’équation comme .
Étape 2.2.1.3.3
Remplacez toutes les occurrences de par dans chaque équation.
Étape 2.2.1.3.3.1
Remplacez toutes les occurrences de dans par .
Étape 2.2.1.3.3.2
Simplifiez le côté droit.
Étape 2.2.1.3.3.2.1
Supprimez les parenthèses.
Étape 2.2.1.3.4
Résolvez dans .
Étape 2.2.1.3.4.1
Réécrivez l’équation comme .
Étape 2.2.1.3.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.2.1.3.5
Résolvez le système d’équations.
Étape 2.2.1.3.6
Indiquez toutes les solutions.
Étape 2.2.1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour , et .
Étape 2.2.1.5
Simplifiez
Étape 2.2.1.5.1
Supprimez les parenthèses.
Étape 2.2.1.5.2
Simplifiez le numérateur.
Étape 2.2.1.5.2.1
Réécrivez comme .
Étape 2.2.1.5.2.2
Additionnez et .
Étape 2.2.1.5.3
Placez le signe moins devant la fraction.
Étape 2.2.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.3
L’intégrale de par rapport à est .
Étape 2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.5
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.2.5.1
Laissez . Déterminez .
Étape 2.2.5.1.1
Différenciez .
Étape 2.2.5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.5.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.5.1.5
Additionnez et .
Étape 2.2.5.2
Réécrivez le problème en utilisant et .
Étape 2.2.6
Simplifiez
Étape 2.2.6.1
Multipliez par .
Étape 2.2.6.2
Déplacez à gauche de .
Étape 2.2.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.8
L’intégrale de par rapport à est .
Étape 2.2.9
Simplifiez
Étape 2.2.10
Remplacez toutes les occurrences de par .
Étape 2.2.11
Remettez les termes dans l’ordre.
Étape 2.3
Appliquez la règle de la constante.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .