Calcul infinitésimal Exemples

Résoudre l''équation différentielle 2(dy)/(dx)-1/y=(2x)/y
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.1.2.2
Ajoutez aux deux côtés de l’équation.
Étape 1.1.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Divisez chaque terme dans par .
Étape 1.1.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.2.1.1
Annulez le facteur commun.
Étape 1.1.3.2.1.2
Divisez par .
Étape 1.1.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.1.3.3.1.2
Multipliez par .
Étape 1.1.3.3.1.3
Déplacez à gauche de .
Étape 1.1.3.3.1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.1.3.3.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1.5.1
Factorisez à partir de .
Étape 1.1.3.3.1.5.2
Annulez le facteur commun.
Étape 1.1.3.3.1.5.3
Réécrivez l’expression.
Étape 1.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.2
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Multipliez par .
Étape 1.2.2.2
Réorganisez les facteurs de .
Étape 1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.4
Déplacez à gauche de .
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Factorisez à partir de .
Étape 1.4.2
Annulez le facteur commun.
Étape 1.4.3
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Appliquez la règle de la constante.
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.1.2
Associez et .
Étape 3.2.2.1.1.3
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.1.1
Annulez le facteur commun.
Étape 3.2.2.1.3.1.2
Réécrivez l’expression.
Étape 3.2.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.