Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=x^2y^2+x^2+y^2+1
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.1.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.1.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Remettez dans l’ordre et .
Étape 2.2.1.2
Réécrivez comme .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Appliquez la règle de la constante.
Étape 2.3.4
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Prenez l’arc tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de l’arc tangente.
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Associez et .