Calcul infinitésimal Exemples

Résoudre l''équation différentielle (x-34)(dy)/(dx)-y=(x-34)^3
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Divisez par .
Étape 1.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Factorisez à partir de .
Étape 1.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Multipliez par .
Étape 1.3.2.2
Annulez le facteur commun.
Étape 1.3.2.3
Réécrivez l’expression.
Étape 1.3.2.4
Divisez par .
Étape 1.4
Factorisez à partir de .
Étape 1.5
Remettez dans l’ordre et .
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Placez le signe moins devant la fraction.
Étape 2.2.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.3
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.1
Différenciez .
Étape 2.2.3.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.3.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.1.5
Additionnez et .
Étape 2.2.3.2
Réécrivez le problème en utilisant et .
Étape 2.2.4
L’intégrale de par rapport à est .
Étape 2.2.5
Simplifiez
Étape 2.2.6
Remplacez toutes les occurrences de par .
Étape 2.3
Retirez la constante d’intégration.
Étape 2.4
Utilisez la règle de puissance logarithmique.
Étape 2.5
L’élévation à une puissance et log sont des fonctions inverses.
Étape 2.6
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Associez et .
Étape 3.2.2
Placez le signe moins devant la fraction.
Étape 3.2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.4
Associez et .
Étape 3.2.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
Multipliez par .
Étape 3.2.5.2
Élevez à la puissance .
Étape 3.2.5.3
Élevez à la puissance .
Étape 3.2.5.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.5.5
Additionnez et .
Étape 3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Multipliez par .
Étape 3.4.2
Élevez à la puissance .
Étape 3.4.3
Élevez à la puissance .
Étape 3.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.5
Additionnez et .
Étape 3.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Appliquez la propriété distributive.
Étape 3.6.2
Déplacez à gauche de .
Étape 3.7
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Factorisez à partir de .
Étape 3.7.2
Annulez le facteur commun.
Étape 3.7.3
Réécrivez l’expression.
Étape 3.8
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7.3
Appliquez la règle de la constante.
Étape 7.4
Simplifiez
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Associez et .
Étape 8.2
Associez et .
Étape 8.3
Multipliez les deux côtés par .
Étape 8.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.1.1
Annulez le facteur commun.
Étape 8.4.1.1.2
Réécrivez l’expression.
Étape 8.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.1
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 8.4.2.1.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1.1.1
Associez et .
Étape 8.4.2.1.2.1.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1.1.2.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1.1.2.1.1
Élevez à la puissance .
Étape 8.4.2.1.2.1.1.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 8.4.2.1.2.1.1.2.2
Additionnez et .
Étape 8.4.2.1.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1.2.1
Factorisez à partir de .
Étape 8.4.2.1.2.1.2.2
Annulez le facteur commun.
Étape 8.4.2.1.2.1.2.3
Réécrivez l’expression.
Étape 8.4.2.1.2.1.3
Déplacez à gauche de .
Étape 8.4.2.1.2.1.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.1.4.1
Déplacez .
Étape 8.4.2.1.2.1.4.2
Multipliez par .
Étape 8.4.2.1.2.1.5
Multipliez par .
Étape 8.4.2.1.2.1.6
Déplacez à gauche de .
Étape 8.4.2.1.2.2
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.2.1
Soustrayez de .
Étape 8.4.2.1.2.2.2
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1.2.2.2.1
Déplacez .
Étape 8.4.2.1.2.2.2.2
Déplacez .