Calcul infinitésimal Exemples

Résoudre l''équation différentielle (e^x+y^2)dx+(xy-(e^x)/y-2y^2)dy=0
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.5
Additionnez et .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.4.3
Associez et .
Étape 2.5
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.2
Additionnez et .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme le côté gauche n’est pas égal au côté droit, l’équation n’est pas une identité.
n’est pas une identité.
n’est pas une identité.
Étape 4
Déterminez le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez par .
Étape 4.2
Remplacez par .
Étape 4.3
Remplacez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Multipliez le numérateur et le dénominateur de la fraction par .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Multipliez par .
Étape 4.3.2.2
Associez.
Étape 4.3.3
Appliquez la propriété distributive.
Étape 4.3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.3.4.2
Annulez le facteur commun.
Étape 4.3.4.3
Réécrivez l’expression.
Étape 4.3.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Multipliez par .
Étape 4.3.5.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.3.5.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.3.1
Déplacez .
Étape 4.3.5.3.2
Multipliez par .
Étape 4.3.5.4
Multipliez par .
Étape 4.3.5.5
Soustrayez de .
Étape 4.3.6
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.6.1
Factorisez à partir de .
Étape 4.3.6.2
Factorisez à partir de .
Étape 4.3.6.3
Factorisez à partir de .
Étape 4.3.7
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.7.1
Factorisez à partir de .
Étape 4.3.7.2
Factorisez à partir de .
Étape 4.3.7.3
Factorisez à partir de .
Étape 4.3.7.4
Réécrivez comme .
Étape 4.3.7.5
Remettez les termes dans l’ordre.
Étape 4.3.7.6
Annulez le facteur commun.
Étape 4.3.7.7
Réécrivez l’expression.
Étape 4.3.8
Remplacez par .
Étape 4.4
Déterminez le facteur d’intégration .
Étape 5
Évaluez l’intégrale .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
L’intégrale de par rapport à est .
Étape 5.3
Simplifiez
Étape 5.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.4.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.4.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6
Multipliez les deux côtés de par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par .
Étape 6.3
Multipliez par .
Étape 6.4
Multipliez par .
Étape 6.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.5.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.5.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.3.1
Déplacez .
Étape 6.5.3.2
Multipliez par .
Étape 6.5.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.5.5
Associez et .
Étape 6.5.6
Associez les numérateurs sur le dénominateur commun.
Étape 6.5.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.7.1
Déplacez .
Étape 6.5.7.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.7.2.1
Élevez à la puissance .
Étape 6.5.7.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 6.5.7.3
Additionnez et .
Étape 6.6
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.7
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.7.1
Multipliez par .
Étape 6.7.2
Élevez à la puissance .
Étape 6.7.3
Élevez à la puissance .
Étape 6.7.4
Utilisez la règle de puissance pour associer des exposants.
Étape 6.7.5
Additionnez et .
Étape 7
Définissez égal à l’intégrale de .
Étape 8
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez la fraction en plusieurs fractions.
Étape 8.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Factorisez à partir de .
Étape 8.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.2.1
Élevez à la puissance .
Étape 8.3.2.2
Factorisez à partir de .
Étape 8.3.2.3
Annulez le facteur commun.
Étape 8.3.2.4
Réécrivez l’expression.
Étape 8.3.2.5
Divisez par .
Étape 8.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8.5
L’intégrale de par rapport à est .
Étape 8.6
Appliquez la règle de la constante.
Étape 8.7
Simplifiez
Étape 9
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 10
Définissez .
Étape 11
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Différenciez par rapport à .
Étape 11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 11.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.3.2
Réécrivez comme .
Étape 11.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 11.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 11.4.3
Multipliez par .
Étape 11.5
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 11.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.6.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 11.6.2
Associez et .
Étape 11.6.3
Remettez les termes dans l’ordre.
Étape 12
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.1
Soustrayez des deux côtés de l’équation.
Étape 12.1.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.1.1.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.3.1
Appliquez la propriété distributive.
Étape 12.1.1.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.3.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.3.2.1.1
Multipliez par .
Étape 12.1.1.3.2.1.2
Multipliez par .
Étape 12.1.1.3.2.2
Multipliez par .
Étape 12.1.1.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.4.1
Additionnez et .
Étape 12.1.1.4.2
Additionnez et .
Étape 12.1.1.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.5.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.5.1.1
Factorisez à partir de .
Étape 12.1.1.5.1.2
Factorisez à partir de .
Étape 12.1.1.5.1.3
Factorisez à partir de .
Étape 12.1.1.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.5.2.1
Annulez le facteur commun.
Étape 12.1.1.5.2.2
Divisez par .
Étape 12.1.1.6
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.6.1
Soustrayez de .
Étape 12.1.1.6.2
Additionnez et .
Étape 12.1.2
Soustrayez des deux côtés de l’équation.
Étape 13
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Intégrez les deux côtés de .
Étape 13.2
Évaluez .
Étape 13.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13.5
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 13.5.1
Réécrivez comme .
Étape 13.5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 13.5.2.1
Associez et .
Étape 13.5.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 13.5.2.2.1
Factorisez à partir de .
Étape 13.5.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 13.5.2.2.2.1
Factorisez à partir de .
Étape 13.5.2.2.2.2
Annulez le facteur commun.
Étape 13.5.2.2.2.3
Réécrivez l’expression.
Étape 13.5.2.2.2.4
Divisez par .
Étape 14
Remplacez par dans .