Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.5
Additionnez et .
Étape 2
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.4.3
Associez et .
Étape 2.5
Différenciez en utilisant la règle de la constante.
Étape 2.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.2
Additionnez et .
Étape 3
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme le côté gauche n’est pas égal au côté droit, l’équation n’est pas une identité.
n’est pas une identité.
n’est pas une identité.
Étape 4
Étape 4.1
Remplacez par .
Étape 4.2
Remplacez par .
Étape 4.3
Remplacez par .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Multipliez le numérateur et le dénominateur de la fraction par .
Étape 4.3.2.1
Multipliez par .
Étape 4.3.2.2
Associez.
Étape 4.3.3
Appliquez la propriété distributive.
Étape 4.3.4
Annulez le facteur commun de .
Étape 4.3.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.3.4.2
Annulez le facteur commun.
Étape 4.3.4.3
Réécrivez l’expression.
Étape 4.3.5
Simplifiez le numérateur.
Étape 4.3.5.1
Multipliez par .
Étape 4.3.5.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.3.5.3
Multipliez par en additionnant les exposants.
Étape 4.3.5.3.1
Déplacez .
Étape 4.3.5.3.2
Multipliez par .
Étape 4.3.5.4
Multipliez par .
Étape 4.3.5.5
Soustrayez de .
Étape 4.3.6
Factorisez à partir de .
Étape 4.3.6.1
Factorisez à partir de .
Étape 4.3.6.2
Factorisez à partir de .
Étape 4.3.6.3
Factorisez à partir de .
Étape 4.3.7
Annulez le facteur commun à et .
Étape 4.3.7.1
Factorisez à partir de .
Étape 4.3.7.2
Factorisez à partir de .
Étape 4.3.7.3
Factorisez à partir de .
Étape 4.3.7.4
Réécrivez comme .
Étape 4.3.7.5
Remettez les termes dans l’ordre.
Étape 4.3.7.6
Annulez le facteur commun.
Étape 4.3.7.7
Réécrivez l’expression.
Étape 4.3.8
Remplacez par .
Étape 4.4
Déterminez le facteur d’intégration .
Étape 5
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
L’intégrale de par rapport à est .
Étape 5.3
Simplifiez
Étape 5.4
Simplifiez chaque terme.
Étape 5.4.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.4.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.4.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par .
Étape 6.3
Multipliez par .
Étape 6.4
Multipliez par .
Étape 6.5
Simplifiez le numérateur.
Étape 6.5.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.5.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.5.3
Multipliez par en additionnant les exposants.
Étape 6.5.3.1
Déplacez .
Étape 6.5.3.2
Multipliez par .
Étape 6.5.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.5.5
Associez et .
Étape 6.5.6
Associez les numérateurs sur le dénominateur commun.
Étape 6.5.7
Multipliez par en additionnant les exposants.
Étape 6.5.7.1
Déplacez .
Étape 6.5.7.2
Multipliez par .
Étape 6.5.7.2.1
Élevez à la puissance .
Étape 6.5.7.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 6.5.7.3
Additionnez et .
Étape 6.6
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.7
Multipliez .
Étape 6.7.1
Multipliez par .
Étape 6.7.2
Élevez à la puissance .
Étape 6.7.3
Élevez à la puissance .
Étape 6.7.4
Utilisez la règle de puissance pour associer des exposants.
Étape 6.7.5
Additionnez et .
Étape 7
Définissez égal à l’intégrale de .
Étape 8
Étape 8.1
Divisez la fraction en plusieurs fractions.
Étape 8.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8.3
Annulez le facteur commun à et .
Étape 8.3.1
Factorisez à partir de .
Étape 8.3.2
Annulez les facteurs communs.
Étape 8.3.2.1
Élevez à la puissance .
Étape 8.3.2.2
Factorisez à partir de .
Étape 8.3.2.3
Annulez le facteur commun.
Étape 8.3.2.4
Réécrivez l’expression.
Étape 8.3.2.5
Divisez par .
Étape 8.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8.5
L’intégrale de par rapport à est .
Étape 8.6
Appliquez la règle de la constante.
Étape 8.7
Simplifiez
Étape 9
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 10
Définissez .
Étape 11
Étape 11.1
Différenciez par rapport à .
Étape 11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 11.3
Évaluez .
Étape 11.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.3.2
Réécrivez comme .
Étape 11.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.4
Évaluez .
Étape 11.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.4.3
Multipliez par .
Étape 11.5
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 11.6
Simplifiez
Étape 11.6.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 11.6.2
Associez et .
Étape 11.6.3
Remettez les termes dans l’ordre.
Étape 12
Étape 12.1
Résolvez .
Étape 12.1.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Étape 12.1.1.1
Soustrayez des deux côtés de l’équation.
Étape 12.1.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.1.1.3
Simplifiez chaque terme.
Étape 12.1.1.3.1
Appliquez la propriété distributive.
Étape 12.1.1.3.2
Simplifiez
Étape 12.1.1.3.2.1
Multipliez .
Étape 12.1.1.3.2.1.1
Multipliez par .
Étape 12.1.1.3.2.1.2
Multipliez par .
Étape 12.1.1.3.2.2
Multipliez par .
Étape 12.1.1.4
Associez les termes opposés dans .
Étape 12.1.1.4.1
Additionnez et .
Étape 12.1.1.4.2
Additionnez et .
Étape 12.1.1.5
Simplifiez chaque terme.
Étape 12.1.1.5.1
Factorisez à partir de .
Étape 12.1.1.5.1.1
Factorisez à partir de .
Étape 12.1.1.5.1.2
Factorisez à partir de .
Étape 12.1.1.5.1.3
Factorisez à partir de .
Étape 12.1.1.5.2
Annulez le facteur commun de .
Étape 12.1.1.5.2.1
Annulez le facteur commun.
Étape 12.1.1.5.2.2
Divisez par .
Étape 12.1.1.6
Associez les termes opposés dans .
Étape 12.1.1.6.1
Soustrayez de .
Étape 12.1.1.6.2
Additionnez et .
Étape 12.1.2
Soustrayez des deux côtés de l’équation.
Étape 13
Étape 13.1
Intégrez les deux côtés de .
Étape 13.2
Évaluez .
Étape 13.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13.5
Simplifiez la réponse.
Étape 13.5.1
Réécrivez comme .
Étape 13.5.2
Simplifiez
Étape 13.5.2.1
Associez et .
Étape 13.5.2.2
Annulez le facteur commun à et .
Étape 13.5.2.2.1
Factorisez à partir de .
Étape 13.5.2.2.2
Annulez les facteurs communs.
Étape 13.5.2.2.2.1
Factorisez à partir de .
Étape 13.5.2.2.2.2
Annulez le facteur commun.
Étape 13.5.2.2.2.3
Réécrivez l’expression.
Étape 13.5.2.2.2.4
Divisez par .
Étape 14
Remplacez par dans .