Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Appliquez les règles de base des exposants.
Étape 2.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.2
Multipliez les exposants dans .
Étape 2.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.2
Associez et .
Étape 2.2.1.2.3
Placez le signe moins devant la fraction.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Appliquez la règle de la constante.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Associez.
Étape 3.2.1.1.3
Annulez le facteur commun.
Étape 3.2.1.1.4
Réécrivez l’expression.
Étape 3.2.1.1.5
Annulez le facteur commun.
Étape 3.2.1.1.6
Divisez par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Associez et .
Étape 3.2.2.1.3
Associez et .
Étape 3.3
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3.4
Simplifiez le côté gauche.
Étape 3.4.1
Simplifiez .
Étape 3.4.1.1
Multipliez les exposants dans .
Étape 3.4.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.1.1.2
Annulez le facteur commun de .
Étape 3.4.1.1.2.1
Annulez le facteur commun.
Étape 3.4.1.1.2.2
Réécrivez l’expression.
Étape 3.4.1.1.3
Annulez le facteur commun de .
Étape 3.4.1.1.3.1
Annulez le facteur commun.
Étape 3.4.1.1.3.2
Réécrivez l’expression.
Étape 3.4.1.2
Simplifiez
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.