Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=yx(x+4)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Factorisez à partir de .
Étape 1.2.1.2
Annulez le facteur commun.
Étape 1.2.1.3
Réécrivez l’expression.
Étape 1.2.2
Appliquez la propriété distributive.
Étape 1.2.3
Multipliez par .
Étape 1.2.4
Déplacez à gauche de .
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Simplifiez
Étape 2.3.5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.1
Associez et .
Étape 2.3.5.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.2.1
Factorisez à partir de .
Étape 2.3.5.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.2.2.1
Factorisez à partir de .
Étape 2.3.5.2.2.2.2
Annulez le facteur commun.
Étape 2.3.5.2.2.2.3
Réécrivez l’expression.
Étape 2.3.5.2.2.2.4
Divisez par .
Étape 2.3.6
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Associez et .
Étape 3.3.3
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Remettez dans l’ordre et .
Étape 4.3
Combinez des constantes avec le plus ou le moins.