Calcul infinitésimal Exemples

Résoudre l''équation différentielle (1+ logarithme népérien de x+y/x)dx-(1- logarithme népérien de x)dy=0
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Multipliez par .
Étape 1.4
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Additionnez et .
Étape 1.4.2
Additionnez et .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4
Additionnez et .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.6
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
Multipliez par .
Étape 2.2.6.2
Multipliez par .
Étape 2.3
La dérivée de par rapport à est .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 4
Définissez égal à l’intégrale de .
Étape 5
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Appliquez la règle de la constante.
Étape 5.2
Réécrivez comme .
Étape 6
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 7
Définissez .
Étape 8
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Différenciez par rapport à .
Étape 8.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.4
La dérivée de par rapport à est .
Étape 8.3.5
Additionnez et .
Étape 8.3.6
Associez et .
Étape 8.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 8.5
Remettez les termes dans l’ordre.
Étape 9
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1.1
Soustrayez des deux côtés de l’équation.
Étape 9.1.1.2
Soustrayez des deux côtés de l’équation.
Étape 9.1.1.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1.3.1
Soustrayez de .
Étape 9.1.1.3.2
Additionnez et .
Étape 9.1.2
Ajoutez aux deux côtés de l’équation.
Étape 10
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Intégrez les deux côtés de .
Étape 10.2
Évaluez .
Étape 10.3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 10.4
Appliquez la règle de la constante.
Étape 10.5
Intégrez par parties en utilisant la formule , où et .
Étape 10.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.6.1
Associez et .
Étape 10.6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.6.2.1
Annulez le facteur commun.
Étape 10.6.2.2
Réécrivez l’expression.
Étape 10.7
Appliquez la règle de la constante.
Étape 10.8
Simplifiez
Étape 10.9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.9.1
Soustrayez de .
Étape 10.9.2
Additionnez et .
Étape 11
Remplacez par dans .
Étape 12
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Appliquez la propriété distributive.
Étape 12.1.2
Réécrivez comme .
Étape 12.2
Remettez les facteurs dans l’ordre dans .