Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Annulez le facteur commun.
Étape 1.2.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Laissez . Puis . Réécrivez avec et .
Étape 2.2.1.1
Laissez . Déterminez .
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.3.2.1
Laissez . Déterminez .
Étape 2.3.2.1.1
Réécrivez.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.2.2
Réécrivez le problème en utilisant et .
Étape 2.3.3
Placez le signe moins devant la fraction.
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
Simplifiez l’expression.
Étape 2.3.5.1
Multipliez par .
Étape 2.3.5.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.5.3
Multipliez les exposants dans .
Étape 2.3.5.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.5.3.2
Multipliez par .
Étape 2.3.6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.7
Simplifiez
Étape 2.3.7.1
Réécrivez comme .
Étape 2.3.7.2
Simplifiez
Étape 2.3.7.2.1
Multipliez par .
Étape 2.3.7.2.2
Associez et .
Étape 2.3.8
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3
Résolvez .
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Simplifiez .
Étape 3.3.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.2.3
Simplifiez le numérateur.
Étape 3.3.2.3.1
Appliquez la propriété distributive.
Étape 3.3.2.3.2
Déplacez à gauche de .
Étape 3.3.2.3.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.3
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.3.4.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.4.2
Simplifiez chaque terme.
Étape 3.3.4.2.1
Divisez la fraction en deux fractions.
Étape 3.3.4.2.2
Simplifiez chaque terme.
Étape 3.3.4.2.2.1
Factorisez à partir de .
Étape 3.3.4.2.2.1.1
Factorisez à partir de .
Étape 3.3.4.2.2.1.2
Factorisez à partir de .
Étape 3.3.4.2.2.2
Placez le signe moins devant la fraction.
Étape 4
Simplifiez la constante d’intégration.