Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=6x^-3+8x^-1-1 ; , y(1)=0
; ,
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.1
Associez et .
Étape 2.3.4.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.3.5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.6
L’intégrale de par rapport à est .
Étape 2.3.7
Appliquez la règle de la constante.
Étape 2.3.8
Simplifiez
Étape 2.3.9
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 4.2.1.2
Divisez par .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.2.1.5
Le logarithme naturel de est .
Étape 4.2.1.6
Multipliez par .
Étape 4.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Additionnez et .
Étape 4.2.2.2
Soustrayez de .
Étape 4.3
Ajoutez aux deux côtés de l’équation.
Étape 5
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez par .
Étape 5.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.2.2
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.