Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Résolvez .
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.1.2.1
Divisez chaque terme dans par .
Étape 1.1.2.2
Simplifiez le côté gauche.
Étape 1.1.2.2.1
Annulez le facteur commun de .
Étape 1.1.2.2.1.1
Annulez le facteur commun.
Étape 1.1.2.2.1.2
Réécrivez l’expression.
Étape 1.1.2.2.2
Annulez le facteur commun de .
Étape 1.1.2.2.2.1
Annulez le facteur commun.
Étape 1.1.2.2.2.2
Divisez par .
Étape 1.1.2.3
Simplifiez le côté droit.
Étape 1.1.2.3.1
Placez le signe moins devant la fraction.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Étape 1.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.2
Annulez le facteur commun de .
Étape 1.3.2.1
Factorisez à partir de .
Étape 1.3.2.2
Factorisez à partir de .
Étape 1.3.2.3
Annulez le facteur commun.
Étape 1.3.2.4
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Simplifiez la réponse.
Étape 2.3.4.1
Réécrivez comme .
Étape 2.3.4.2
Simplifiez
Étape 2.3.4.2.1
Multipliez par .
Étape 2.3.4.2.2
Multipliez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Multipliez .
Étape 3.2.2.1.3.1
Multipliez par .
Étape 3.2.2.1.3.2
Associez et .
Étape 3.2.2.1.4
Placez le signe moins devant la fraction.
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Simplifiez .
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.1.1
Factorisez à partir de .
Étape 3.4.1.2
Factorisez à partir de .
Étape 3.4.1.3
Factorisez à partir de .
Étape 3.4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.3
Simplifiez les termes.
Étape 3.4.3.1
Associez et .
Étape 3.4.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.4
Déplacez à gauche de .
Étape 3.4.5
Associez et .
Étape 3.4.6
Réécrivez comme .
Étape 3.4.6.1
Factorisez la puissance parfaite dans .
Étape 3.4.6.2
Factorisez la puissance parfaite dans .
Étape 3.4.6.3
Réorganisez la fraction .
Étape 3.4.7
Extrayez les termes de sous le radical.
Étape 3.4.8
Associez et .
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.