Calcul infinitésimal Exemples

Résoudre l''équation différentielle y(x+1)(dy)/(dx)=x(y^2+1)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Réécrivez l’expression.
Étape 1.1.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.1
Annulez le facteur commun.
Étape 1.1.2.2.2
Divisez par .
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Multipliez par .
Étape 1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Factorisez à partir de .
Étape 1.4.2.2
Annulez le facteur commun.
Étape 1.4.2.3
Réécrivez l’expression.
Étape 1.4.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.1
Factorisez à partir de .
Étape 1.4.3.2
Annulez le facteur commun.
Étape 1.4.3.3
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Multipliez par .
Étape 2.2.2.2
Déplacez à gauche de .
Étape 2.2.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.4
L’intégrale de par rapport à est .
Étape 2.2.5
Simplifiez
Étape 2.2.6
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
++
Étape 2.3.1.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
++
Étape 2.3.1.3
Multipliez le nouveau terme du quotient par le diviseur.
++
++
Étape 2.3.1.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
++
--
Étape 2.3.1.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
++
--
-
Étape 2.3.1.6
La réponse finale est le quotient plus le reste sur le diviseur.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Appliquez la règle de la constante.
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.1
Différenciez .
Étape 2.3.5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5.1.5
Additionnez et .
Étape 2.3.5.2
Réécrivez le problème en utilisant et .
Étape 2.3.6
L’intégrale de par rapport à est .
Étape 2.3.7
Simplifiez
Étape 2.3.8
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Multipliez par .
Étape 3.3
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.4
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 3.4.1.1.2
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 3.4.1.2
Utilisez la propriété du produit des logarithmes, .
Étape 3.5
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.6
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Réécrivez l’équation comme .
Étape 3.7.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.2.1
Divisez chaque terme dans par .
Étape 3.7.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.2.2.1.1
Annulez le facteur commun.
Étape 3.7.2.2.1.2
Divisez par .
Étape 3.7.3
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.7.4
Soustrayez des deux côtés de l’équation.
Étape 3.7.5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez la constante d’intégration.
Étape 4.2
Réécrivez comme .
Étape 4.3
Remettez dans l’ordre et .
Étape 4.4
Combinez des constantes avec le plus ou le moins.