Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)+xy=3x
Étape 1
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Définissez l’intégration.
Étape 1.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 1.3
Retirez la constante d’intégration.
Étape 1.4
Associez et .
Étape 2
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez chaque terme par .
Étape 2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3
Remettez les facteurs dans l’ordre dans .
Étape 3
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 4
Définissez une intégrale de chaque côté.
Étape 5
Intégrez le côté gauche.
Étape 6
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Différenciez .
Étape 6.2.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 6.2.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 6.2.1.2.3
Remplacez toutes les occurrences de par .
Étape 6.2.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.2.1.3.2
Associez et .
Étape 6.2.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.2.1.3.4
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.3.4.1
Associez et .
Étape 6.2.1.3.4.2
Associez et .
Étape 6.2.1.3.4.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.3.4.3.1
Annulez le facteur commun.
Étape 6.2.1.3.4.3.2
Divisez par .
Étape 6.2.1.3.4.4
Remettez les facteurs dans l’ordre dans .
Étape 6.2.2
Réécrivez le problème en utilisant et .
Étape 6.3
Appliquez la règle de la constante.
Étape 6.4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Simplifiez
Étape 6.4.2
Remplacez toutes les occurrences de par .
Étape 6.4.3
Remettez les termes dans l’ordre.
Étape 7
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Divisez chaque terme dans par .
Étape 7.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Annulez le facteur commun.
Étape 7.2.1.2
Divisez par .
Étape 7.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1.1.1
Factorisez à partir de .
Étape 7.3.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1.1.2.1
Multipliez par .
Étape 7.3.1.1.2.2
Annulez le facteur commun.
Étape 7.3.1.1.2.3
Réécrivez l’expression.
Étape 7.3.1.1.2.4
Divisez par .
Étape 7.3.1.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1.2.1.1
Factorisez à partir de .
Étape 7.3.1.2.1.2
Factorisez à partir de .
Étape 7.3.1.2.1.3
Factorisez à partir de .
Étape 7.3.1.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1.2.2.1
Annulez le facteur commun.
Étape 7.3.1.2.2.2
Réécrivez l’expression.
Étape 7.3.1.2.3
Soustrayez de .
Étape 7.3.1.3
Multipliez par .
Étape 7.3.1.4
Divisez par .
Étape 7.3.1.5
Tout ce qui est élevé à la puissance est .
Étape 7.3.1.6
Multipliez par .