Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Étape 1.1.2.1
Annulez le facteur commun de .
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Étape 1.3.1
Associez.
Étape 1.3.2
Annulez le facteur commun de .
Étape 1.3.2.1
Annulez le facteur commun.
Étape 1.3.2.2
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Appliquez les règles de base des exposants.
Étape 2.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.1.2
Multipliez les exposants dans .
Étape 2.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Réécrivez comme .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3
Résolvez .
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4
Étape 4.1
Réécrivez comme .
Étape 4.2
Remettez dans l’ordre et .
Étape 4.3
Combinez des constantes avec le plus ou le moins.