Calcul infinitésimal Exemples

Résoudre l''équation différentielle (tan(x)-sin(x)sin(y))dx+(cos(x)cos(y))dy=0
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Soustrayez de .
Étape 1.4.2
Réorganisez les facteurs de .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
La dérivée de par rapport à est .
Étape 2.4
Réorganisez les facteurs de .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 4
Définissez égal à l’intégrale de .
Étape 5
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
L’intégrale de par rapport à est .
Étape 5.3
Simplifiez
Étape 6
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 7
Définissez .
Étape 8
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Différenciez par rapport à .
Étape 8.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.2
La dérivée de par rapport à est .
Étape 8.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 8.5
Remettez les termes dans l’ordre.
Étape 9
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1.1.1
Réécrivez en termes de sinus et de cosinus.
Étape 9.1.1.1.2
Convertissez de à .
Étape 9.1.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.1
Ajoutez aux deux côtés de l’équation.
Étape 9.1.2.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.2.1
Additionnez et .
Étape 9.1.2.2.2
Additionnez et .
Étape 9.1.2.3
Réécrivez en termes de sinus et de cosinus.
Étape 9.1.2.4
Convertissez de à .
Étape 10
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Intégrez les deux côtés de .
Étape 10.2
Évaluez .
Étape 10.3
L’intégrale de par rapport à est .
Étape 11
Remplacez par dans .