Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=cos(x)^2
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.4
Appliquez la règle de la constante.
Étape 2.3.5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.1
Différenciez .
Étape 2.3.5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5.1.4
Multipliez par .
Étape 2.3.5.2
Réécrivez le problème en utilisant et .
Étape 2.3.6
Associez et .
Étape 2.3.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.8
L’intégrale de par rapport à est .
Étape 2.3.9
Simplifiez
Étape 2.3.10
Remplacez toutes les occurrences de par .
Étape 2.3.11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.11.1
Associez et .
Étape 2.3.11.2
Appliquez la propriété distributive.
Étape 2.3.11.3
Associez et .
Étape 2.3.11.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.11.4.1
Multipliez par .
Étape 2.3.11.4.2
Multipliez par .
Étape 2.3.12
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .