Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dx)/(dy)=(1+2y^2)/(ysin(x))
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Regroupez des facteurs.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Convertissez de à .
Étape 1.3.2
Réécrivez en termes de sinus et de cosinus, puis annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Remettez dans l’ordre et .
Étape 1.3.2.2
Ajoutez des parenthèses.
Étape 1.3.2.3
Réécrivez en termes de sinus et de cosinus.
Étape 1.3.2.4
Annulez les facteurs communs.
Étape 1.3.3
Multipliez par .
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez la fraction en plusieurs fractions.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Factorisez à partir de .
Étape 2.3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Élevez à la puissance .
Étape 2.3.3.2.2
Factorisez à partir de .
Étape 2.3.3.2.3
Annulez le facteur commun.
Étape 2.3.3.2.4
Réécrivez l’expression.
Étape 2.3.3.2.5
Divisez par .
Étape 2.3.4
L’intégrale de par rapport à est .
Étape 2.3.5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.1
Simplifiez
Étape 2.3.7.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.2.1
Associez et .
Étape 2.3.7.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.2.2.1
Annulez le facteur commun.
Étape 2.3.7.2.2.2
Réécrivez l’expression.
Étape 2.3.7.2.3
Multipliez par .
Étape 2.3.8
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.1
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.2
Réécrivez comme .
Étape 3.1.3.1.3
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.4
Réécrivez comme .
Étape 3.1.3.1.5
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.6
Réécrivez comme .
Étape 3.2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 4
Simplifiez la constante d’intégration.