Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(y+1)^2e^(-3x) with y(0)=2
with
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Annulez le facteur commun.
Étape 1.2.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2.2
Multipliez par .
Étape 2.2.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.4
Réécrivez comme .
Étape 2.2.5
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1.1
Différenciez .
Étape 2.3.1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.1.1.4
Multipliez par .
Étape 2.3.1.2
Réécrivez le problème en utilisant et .
Étape 2.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Placez le signe moins devant la fraction.
Étape 2.3.2.2
Associez et .
Étape 2.3.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.3.7
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez et .
Étape 3.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.2.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 3.2.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.2.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 3.2.5
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 3.2.7
Le facteur pour est lui-même.
se produit fois.
Étape 3.2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3.2.9
Le plus petit multiple commun de certains nombres est le plus petit nombre dont les nombres sont des facteurs.
Étape 3.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2.1.2
Factorisez à partir de .
Étape 3.3.2.1.3
Annulez le facteur commun.
Étape 3.3.2.1.4
Réécrivez l’expression.
Étape 3.3.2.2
Multipliez par .
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.3.1.1.2
Annulez le facteur commun.
Étape 3.3.3.1.1.3
Réécrivez l’expression.
Étape 3.3.3.1.2
Appliquez la propriété distributive.
Étape 3.3.3.1.3
Multipliez par .
Étape 3.3.3.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.3.1.5
Appliquez la propriété distributive.
Étape 3.3.3.1.6
Multipliez par .
Étape 3.3.3.2
Remettez les facteurs dans l’ordre dans .
Étape 3.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.4.2.2
Soustrayez des deux côtés de l’équation.
Étape 3.4.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.1
Factorisez à partir de .
Étape 3.4.3.2
Factorisez à partir de .
Étape 3.4.3.3
Factorisez à partir de .
Étape 3.4.4
Réécrivez comme .
Étape 3.4.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.1
Divisez chaque terme dans par .
Étape 3.4.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.2.1.1
Annulez le facteur commun.
Étape 3.4.5.2.1.2
Divisez par .
Étape 3.4.5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.3.1.1
Placez le signe moins devant la fraction.
Étape 3.4.5.3.1.2
Placez le signe moins devant la fraction.
Étape 3.4.5.3.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.3.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.5.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.5.3.2.3
Réécrivez comme .
Étape 3.4.5.3.2.4
Factorisez à partir de .
Étape 3.4.5.3.2.5
Factorisez à partir de .
Étape 3.4.5.3.2.6
Factorisez à partir de .
Étape 3.4.5.3.2.7
Factorisez à partir de .
Étape 3.4.5.3.2.8
Factorisez à partir de .
Étape 3.4.5.3.2.9
Factorisez à partir de .
Étape 3.4.5.3.2.10
Factorisez à partir de .
Étape 3.4.5.3.2.11
Réécrivez comme .
Étape 3.4.5.3.2.12
Annulez le facteur commun.
Étape 3.4.5.3.2.13
Réécrivez l’expression.
Étape 4
Simplifiez la constante d’intégration.
Étape 5
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Factorisez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Tout ce qui est élevé à la puissance est .
Étape 6.2.3
Multipliez par .
Étape 6.2.4
Soustrayez de .
Étape 6.2.5
Multipliez par .
Étape 6.2.6
Tout ce qui est élevé à la puissance est .
Étape 6.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 6.3.2
Supprimez les parenthèses.
Étape 6.3.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 6.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Multipliez chaque terme dans par .
Étape 6.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1.1
Annulez le facteur commun.
Étape 6.4.2.1.2
Réécrivez l’expression.
Étape 6.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.3.1
Appliquez la propriété distributive.
Étape 6.4.3.2
Multipliez par .
Étape 6.5
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1.1
Soustrayez des deux côtés de l’équation.
Étape 6.5.1.2
Soustrayez de .
Étape 6.5.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.5.2.2
Soustrayez de .
Étape 6.5.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.3.1
Divisez chaque terme dans par .
Étape 6.5.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.5.3.2.2
Divisez par .
Étape 6.5.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.3.3.1
Divisez par .
Étape 7
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez par .
Étape 7.2
Additionnez et .