Entrer un problème...
Calcul infinitésimal Exemples
for
Étape 1
Écrivez le problème comme une expression mathématique.
Étape 2
Étape 2.1
Divisez chaque terme dans par et simplifiez.
Étape 2.1.1
Divisez chaque terme dans par .
Étape 2.1.2
Simplifiez le côté gauche.
Étape 2.1.2.1
Annulez le facteur commun de .
Étape 2.1.2.1.1
Annulez le facteur commun.
Étape 2.1.2.1.2
Divisez par .
Étape 2.2
Multipliez les deux côtés par .
Étape 2.3
Annulez le facteur commun de .
Étape 2.3.1
Annulez le facteur commun.
Étape 2.3.2
Réécrivez l’expression.
Étape 2.4
Réécrivez l’équation.
Étape 3
Étape 3.1
Définissez une intégrale de chaque côté.
Étape 3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 3.3
Appliquez la règle de la constante.
Étape 3.4
Regroupez la constante d’intégration du côté droit comme .
Étape 4
Étape 4.1
Multipliez les deux côtés de l’équation par .
Étape 4.2
Simplifiez les deux côtés de l’équation.
Étape 4.2.1
Simplifiez le côté gauche.
Étape 4.2.1.1
Simplifiez .
Étape 4.2.1.1.1
Associez et .
Étape 4.2.1.1.2
Annulez le facteur commun de .
Étape 4.2.1.1.2.1
Annulez le facteur commun.
Étape 4.2.1.1.2.2
Réécrivez l’expression.
Étape 4.2.2
Simplifiez le côté droit.
Étape 4.2.2.1
Appliquez la propriété distributive.
Étape 4.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.4
Factorisez à partir de .
Étape 4.4.1
Factorisez à partir de .
Étape 4.4.2
Factorisez à partir de .
Étape 4.4.3
Factorisez à partir de .
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.