Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dt)=0.6y^(1/2)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.2
Associez et .
Étape 1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Annulez le facteur commun.
Étape 1.2.3.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.2
Associez et .
Étape 2.2.1.2.3
Placez le signe moins devant la fraction.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Appliquez la règle de la constante.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Annulez le facteur commun.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.1
Factorisez à partir de .
Étape 3.1.3.1.2
Factorisez à partir de .
Étape 3.1.3.1.3
Séparez les fractions.
Étape 3.1.3.1.4
Divisez par .
Étape 3.1.3.1.5
Divisez par .
Étape 3.2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3.3
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1.2.1
Annulez le facteur commun.
Étape 3.3.1.1.1.2.2
Réécrivez l’expression.
Étape 3.3.1.1.2
Simplifiez
Étape 3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Réécrivez comme .
Étape 3.3.2.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.2.1
Appliquez la propriété distributive.
Étape 3.3.2.1.2.2
Appliquez la propriété distributive.
Étape 3.3.2.1.2.3
Appliquez la propriété distributive.
Étape 3.3.2.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.2.1.3.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.2.1
Déplacez .
Étape 3.3.2.1.3.1.2.2
Multipliez par .
Étape 3.3.2.1.3.1.3
Multipliez par .
Étape 3.3.2.1.3.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.4.1
Associez et .
Étape 3.3.2.1.3.1.4.2
Associez et .
Étape 3.3.2.1.3.1.5
Déplacez à gauche de .
Étape 3.3.2.1.3.1.6
Factorisez à partir de .
Étape 3.3.2.1.3.1.7
Factorisez à partir de .
Étape 3.3.2.1.3.1.8
Séparez les fractions.
Étape 3.3.2.1.3.1.9
Divisez par .
Étape 3.3.2.1.3.1.10
Divisez par .
Étape 3.3.2.1.3.1.11
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.2.1.3.1.12
Associez et .
Étape 3.3.2.1.3.1.13
Factorisez à partir de .
Étape 3.3.2.1.3.1.14
Factorisez à partir de .
Étape 3.3.2.1.3.1.15
Séparez les fractions.
Étape 3.3.2.1.3.1.16
Divisez par .
Étape 3.3.2.1.3.1.17
Divisez par .
Étape 3.3.2.1.3.1.18
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.18.1
Multipliez par .
Étape 3.3.2.1.3.1.18.2
Élevez à la puissance .
Étape 3.3.2.1.3.1.18.3
Élevez à la puissance .
Étape 3.3.2.1.3.1.18.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2.1.3.1.18.5
Additionnez et .
Étape 3.3.2.1.3.1.18.6
Multipliez par .
Étape 3.3.2.1.3.2
Additionnez et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.2.1
Déplacez .
Étape 3.3.2.1.3.2.2
Additionnez et .
Étape 3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Déplacez .
Étape 3.4.2
Remettez dans l’ordre et .
Étape 4
Simplifiez la constante d’intégration.