Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Factorisez à partir de .
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Élevez à la puissance .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.4
Factorisez à partir de .
Étape 1.2
Factorisez à partir de .
Étape 1.2.1
Élevez à la puissance .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 1.2.4
Factorisez à partir de .
Étape 1.2.5
Multipliez par .
Étape 1.3
Regroupez des facteurs.
Étape 1.4
Multipliez les deux côtés par .
Étape 1.5
Simplifiez
Étape 1.5.1
Multipliez par .
Étape 1.5.2
Annulez le facteur commun de .
Étape 1.5.2.1
Factorisez à partir de .
Étape 1.5.2.2
Annulez le facteur commun.
Étape 1.5.2.3
Réécrivez l’expression.
Étape 1.5.3
Annulez le facteur commun de .
Étape 1.5.3.1
Factorisez à partir de .
Étape 1.5.3.2
Annulez le facteur commun.
Étape 1.5.3.3
Réécrivez l’expression.
Étape 1.6
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Divisez la fraction en plusieurs fractions.
Étape 2.2.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.3
Annulez le facteur commun de .
Étape 2.2.3.1
Annulez le facteur commun.
Étape 2.2.3.2
Réécrivez l’expression.
Étape 2.2.4
L’intégrale de par rapport à est .
Étape 2.2.5
Appliquez la règle de la constante.
Étape 2.2.6
Simplifiez
Étape 2.2.7
Remettez les termes dans l’ordre.
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Divisez la fraction en plusieurs fractions.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Annulez le facteur commun de .
Étape 2.3.3.1
Annulez le facteur commun.
Étape 2.3.3.2
Réécrivez l’expression.
Étape 2.3.4
Appliquez la règle de la constante.
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .