Entrer un problème...
Calcul infinitésimal Exemples
; cuando
Étape 1
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.8
Appliquez la règle de la constante.
Étape 2.3.9
Simplifiez
Étape 2.3.9.1
Simplifiez
Étape 2.3.9.1.1
Associez et .
Étape 2.3.9.1.2
Associez et .
Étape 2.3.9.1.3
Associez et .
Étape 2.3.9.2
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 4
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez .
Étape 4.2.1
Simplifiez chaque terme.
Étape 4.2.1.1
Élevez à la puissance .
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
Élevez à la puissance .
Étape 4.2.1.5
Multipliez par .
Étape 4.2.1.6
Multipliez par .
Étape 4.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.2.1
Soustrayez de .
Étape 4.2.2.2
Soustrayez de .
Étape 4.2.2.3
Additionnez et .
Étape 4.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 4.3.1
Ajoutez aux deux côtés de l’équation.
Étape 4.3.2
Additionnez et .
Étape 5
Étape 5.1
Remplacez par .