Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(x^2+3y^2)/(2xy)
Étape 1
Réécrivez l’équation différentielle en fonction de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Séparez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Divisez la fraction en deux fractions.
Étape 1.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Factorisez à partir de .
Étape 1.1.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.2.1
Factorisez à partir de .
Étape 1.1.2.1.2.2
Annulez le facteur commun.
Étape 1.1.2.1.2.3
Réécrivez l’expression.
Étape 1.1.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.1
Factorisez à partir de .
Étape 1.1.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.2.1
Factorisez à partir de .
Étape 1.1.2.2.2.2
Annulez le facteur commun.
Étape 1.1.2.2.2.3
Réécrivez l’expression.
Étape 1.2
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Factorisez à partir de .
Étape 1.2.1.2
Remettez dans l’ordre et .
Étape 1.2.2
Réécrivez comme .
Étape 1.3
Factorisez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Factorisez à partir de .
Étape 1.3.2
Remettez dans l’ordre et .
Étape 2
Laissez . Remplacez par .
Étape 3
Résolvez pour .
Étape 4
Utilisez la règle de produit pour déterminer la dérivée de par rapport à .
Étape 5
Remplacez par .
Étape 6
Résolvez l’équation différentielle remplacée.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.1.1.1.2
Multipliez par .
Étape 6.1.1.1.3
Associez et .
Étape 6.1.1.2
Soustrayez des deux côtés de l’équation.
Étape 6.1.1.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.1
Divisez chaque terme dans par .
Étape 6.1.1.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.2.1.1
Annulez le facteur commun.
Étape 6.1.1.3.2.1.2
Divisez par .
Étape 6.1.1.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.3.1
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.1.3.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.1.3.3.3
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.3.3.1
Associez et .
Étape 6.1.1.3.3.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.1.3.3.3.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.3.3.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.3.3.3.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.3.3.3.1.1.1
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.1.2
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.1.3
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.2
Multipliez par .
Étape 6.1.1.3.3.3.3.1.3
Soustrayez de .
Étape 6.1.1.3.3.3.3.2
Multipliez par .
Étape 6.1.1.3.3.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.3.3.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.1.3.3.4.2
Multipliez par .
Étape 6.1.1.3.3.4.3
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.1.3.3.4.4
Multipliez par .
Étape 6.1.1.3.3.5
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.1.1.3.3.6
Multipliez par .
Étape 6.1.2
Regroupez des facteurs.
Étape 6.1.3
Multipliez les deux côtés par .
Étape 6.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1.4.1
Multipliez par .
Étape 6.1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.4.2.1
Factorisez à partir de .
Étape 6.1.4.2.2
Annulez le facteur commun.
Étape 6.1.4.2.3
Réécrivez l’expression.
Étape 6.1.4.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.4.3.1
Annulez le facteur commun.
Étape 6.1.4.3.2
Réécrivez l’expression.
Étape 6.1.5
Réécrivez l’équation.
Étape 6.2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Définissez une intégrale de chaque côté.
Étape 6.2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2.2.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.2.1.1
Différenciez .
Étape 6.2.2.2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.2.2.2.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.2.2.2.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.2.2.2.1.5
Additionnez et .
Étape 6.2.2.2.2
Réécrivez le problème en utilisant et .
Étape 6.2.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.3.1
Multipliez par .
Étape 6.2.2.3.2
Déplacez à gauche de .
Étape 6.2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2.2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.5.1
Associez et .
Étape 6.2.2.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.5.2.1
Annulez le facteur commun.
Étape 6.2.2.5.2.2
Réécrivez l’expression.
Étape 6.2.2.5.3
Multipliez par .
Étape 6.2.2.6
L’intégrale de par rapport à est .
Étape 6.2.2.7
Remplacez toutes les occurrences de par .
Étape 6.2.3
L’intégrale de par rapport à est .
Étape 6.2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 6.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 6.3.2
Utilisez la propriété du quotient des logarithmes, .
Étape 6.3.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 6.3.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 6.3.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.5.1
Réécrivez l’équation comme .
Étape 6.3.5.2
Multipliez les deux côtés par .
Étape 6.3.5.3
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.5.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.5.3.1.1
Annulez le facteur commun.
Étape 6.3.5.3.1.2
Réécrivez l’expression.
Étape 6.3.5.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.5.4.1
Remettez les facteurs dans l’ordre dans .
Étape 6.3.5.4.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 6.3.5.4.3
Remettez les facteurs dans l’ordre dans .
Étape 6.3.5.4.4
Soustrayez des deux côtés de l’équation.
Étape 6.3.5.4.5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.4
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Simplifiez la constante d’intégration.
Étape 6.4.2
Combinez des constantes avec le plus ou le moins.
Étape 7
Remplacez par .
Étape 8
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Multipliez les deux côtés par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Réécrivez l’expression.