Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(2x)/(1+2y)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.2
Appliquez la règle de la constante.
Étape 2.2.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Simplifiez
Étape 2.2.5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.1
Associez et .
Étape 2.2.5.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.2.1
Annulez le facteur commun.
Étape 2.2.5.2.2.2
Réécrivez l’expression.
Étape 2.2.5.2.3
Multipliez par .
Étape 2.2.6
Remettez les termes dans l’ordre.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Associez et .
Étape 2.3.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.2.1
Annulez le facteur commun.
Étape 2.3.3.2.2.2
Réécrivez l’expression.
Étape 2.3.3.2.3
Multipliez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez des deux côtés de l’équation.
Étape 3.2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Un à n’importe quelle puissance est égal à un.
Étape 3.4.1.2
Multipliez par .
Étape 3.4.1.3
Appliquez la propriété distributive.
Étape 3.4.1.4
Multipliez par .
Étape 3.4.1.5
Multipliez par .
Étape 3.4.2
Multipliez par .
Étape 3.5
La réponse finale est la combinaison des deux solutions.
Étape 4
Simplifiez la constante d’intégration.