Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=2(2x-y)
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez l’équation comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Appliquez la propriété distributive.
Étape 1.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.1.3
Remettez les termes dans l’ordre.
Étape 1.2
Réécrivez l’équation avec des coefficients isolés.
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Multipliez par .
Étape 2.2.2
Appliquez la règle de la constante.
Étape 2.3
Retirez la constante d’intégration.
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2
Multipliez par .
Étape 3.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.4
Multipliez par .
Étape 3.5
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.2
Intégrez par parties en utilisant la formule , où et .
Étape 7.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Associez et .
Étape 7.3.2
Associez et .
Étape 7.3.3
Associez et .
Étape 7.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1.1
Différenciez .
Étape 7.5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.5.1.4
Multipliez par .
Étape 7.5.2
Réécrivez le problème en utilisant et .
Étape 7.6
Associez et .
Étape 7.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.8.1
Multipliez par .
Étape 7.8.2
Multipliez par .
Étape 7.9
L’intégrale de par rapport à est .
Étape 7.10
Réécrivez comme .
Étape 7.11
Remplacez toutes les occurrences de par .
Étape 7.12
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.12.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.12.1.1
Associez et .
Étape 7.12.1.2
Associez et .
Étape 7.12.1.3
Associez et .
Étape 7.12.2
Appliquez la propriété distributive.
Étape 7.12.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.12.3.1
Factorisez à partir de .
Étape 7.12.3.2
Annulez le facteur commun.
Étape 7.12.3.3
Réécrivez l’expression.
Étape 7.12.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.12.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 7.12.4.2
Annulez le facteur commun.
Étape 7.12.4.3
Réécrivez l’expression.
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1.1
Annulez le facteur commun.
Étape 8.3.1.1.2
Divisez par .
Étape 8.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.2.1
Annulez le facteur commun.
Étape 8.3.1.2.2
Divisez par .