Calcul infinitésimal Exemples

Résoudre l''équation différentielle e^(2x)y^2dx+(e^(2x)y-2y)dy=0
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Déplacez à gauche de .
Étape 1.4.2
Remettez les facteurs dans l’ordre dans .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Multipliez par .
Étape 2.3.6
Déplacez à gauche de .
Étape 2.3.7
Déplacez à gauche de .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Additionnez et .
Étape 2.5.2
Réorganisez les facteurs de .
Étape 2.5.3
Remettez les facteurs dans l’ordre dans .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 4
Définissez égal à l’intégrale de .
Étape 5
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5.6
Simplifiez
Étape 5.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.7.1
Associez et .
Étape 5.7.2
Associez et .
Étape 5.7.3
Associez et .
Étape 5.7.4
Associez et .
Étape 5.7.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.7.5.1
Factorisez à partir de .
Étape 5.7.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.7.5.2.1
Factorisez à partir de .
Étape 5.7.5.2.2
Annulez le facteur commun.
Étape 5.7.5.2.3
Réécrivez l’expression.
Étape 5.7.5.2.4
Divisez par .
Étape 5.8
Remettez les termes dans l’ordre.
Étape 6
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 7
Définissez .
Étape 8
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Différenciez par rapport à .
Étape 8.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Associez et .
Étape 8.3.2
Associez et .
Étape 8.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 8.3.4.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 8.3.4.3
Remplacez toutes les occurrences de par .
Étape 8.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.3.7
Multipliez par .
Étape 8.3.8
Déplacez à gauche de .
Étape 8.3.9
Associez et .
Étape 8.3.10
Associez et .
Étape 8.3.11
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.11.1
Annulez le facteur commun.
Étape 8.3.11.2
Divisez par .
Étape 8.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.5
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 8.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.6.1
Additionnez et .
Étape 8.6.2
Remettez les termes dans l’ordre.
Étape 8.6.3
Remettez les facteurs dans l’ordre dans .
Étape 9
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Remettez les facteurs dans l’ordre dans .
Étape 9.1.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.1
Soustrayez des deux côtés de l’équation.
Étape 9.1.2.2
Soustrayez de .
Étape 10
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Intégrez les deux côtés de .
Étape 10.2
Évaluez .
Étape 10.3
L’intégrale de par rapport à est .
Étape 10.4
Additionnez et .
Étape 11
Remplacez par dans .
Étape 12
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Associez et .
Étape 12.1.2
Associez et .
Étape 12.2
Remettez les facteurs dans l’ordre dans .