Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)-y/x=yx^4
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Factorisez à partir de .
Étape 1.2.1.2
Factorisez à partir de .
Étape 1.2.1.3
Factorisez à partir de .
Étape 1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1.1
Élevez à la puissance .
Étape 1.2.4.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.4.2
Additionnez et .
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Annulez le facteur commun.
Étape 1.4.2
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez la fraction en plusieurs fractions.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Factorisez à partir de .
Étape 2.3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Élevez à la puissance .
Étape 2.3.3.2.2
Factorisez à partir de .
Étape 2.3.3.2.3
Annulez le facteur commun.
Étape 2.3.3.2.4
Réécrivez l’expression.
Étape 2.3.3.2.5
Divisez par .
Étape 2.3.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Associez et .
Étape 3.2
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.3
Utilisez la propriété du quotient des logarithmes, .
Étape 3.4
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.5
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Réécrivez l’équation comme .
Étape 3.6.2
Multipliez les deux côtés par .
Étape 3.6.3
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.1.1
Annulez le facteur commun.
Étape 3.6.3.1.2
Réécrivez l’expression.
Étape 3.6.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.4.1
Remettez les facteurs dans l’ordre dans .
Étape 3.6.4.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Remettez dans l’ordre et .
Étape 4.3
Combinez des constantes avec le plus ou le moins.