Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Utilisez pour réécrire comme .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Utilisez pour réécrire comme .
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Associez.
Étape 3.2.1.1.3
Annulez le facteur commun.
Étape 3.2.1.1.4
Réécrivez l’expression.
Étape 3.2.1.1.5
Annulez le facteur commun.
Étape 3.2.1.1.6
Divisez par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Simplifiez les termes.
Étape 3.2.2.1.1.1
Associez et .
Étape 3.2.2.1.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.1.3
Associez.
Étape 3.2.2.1.1.4
Associez et .
Étape 3.2.2.1.2
Simplifiez chaque terme.
Étape 3.2.2.1.2.1
Annulez le facteur commun.
Étape 3.2.2.1.2.2
Réécrivez l’expression.
Étape 3.2.2.1.2.3
Annulez le facteur commun.
Étape 3.2.2.1.2.4
Divisez par .
Étape 3.3
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3.4
Simplifiez le côté gauche.
Étape 3.4.1
Simplifiez .
Étape 3.4.1.1
Multipliez les exposants dans .
Étape 3.4.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.1.1.2
Annulez le facteur commun de .
Étape 3.4.1.1.2.1
Annulez le facteur commun.
Étape 3.4.1.1.2.2
Réécrivez l’expression.
Étape 3.4.1.1.3
Annulez le facteur commun de .
Étape 3.4.1.1.3.1
Annulez le facteur commun.
Étape 3.4.1.1.3.2
Réécrivez l’expression.
Étape 3.4.1.2
Simplifiez
Étape 4
Simplifiez la constante d’intégration.