Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)-(2y)/(x+1)=(x+1)^2
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Étape 1.2
Remettez dans l’ordre et .
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.3
Multipliez par .
Étape 2.2.4
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1.1
Différenciez .
Étape 2.2.4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.4.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4.1.5
Additionnez et .
Étape 2.2.4.2
Réécrivez le problème en utilisant et .
Étape 2.2.5
L’intégrale de par rapport à est .
Étape 2.2.6
Simplifiez
Étape 2.2.7
Remplacez toutes les occurrences de par .
Étape 2.3
Retirez la constante d’intégration.
Étape 2.4
Utilisez la règle de puissance logarithmique.
Étape 2.5
L’élévation à une puissance et log sont des fonctions inverses.
Étape 2.6
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Associez et .
Étape 3.2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.3
Associez et .
Étape 3.2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Multipliez par .
Étape 3.2.4.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.1.1
Élevez à la puissance .
Étape 3.2.4.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.4.2.2
Additionnez et .
Étape 3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Annulez le facteur commun.
Étape 3.3.2
Réécrivez l’expression.
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Appliquez la règle de la constante.
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Associez et .
Étape 8.2
Multipliez les deux côtés par .
Étape 8.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1.1
Annulez le facteur commun.
Étape 8.3.1.1.2
Réécrivez l’expression.
Étape 8.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.2.1.1
Appliquez la propriété distributive.
Étape 8.3.2.1.2
Remettez dans l’ordre et .
Étape 8.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.1
Réécrivez comme .
Étape 8.4.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.2.1
Appliquez la propriété distributive.
Étape 8.4.1.2.2
Appliquez la propriété distributive.
Étape 8.4.1.2.3
Appliquez la propriété distributive.
Étape 8.4.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.3.1.1
Multipliez par .
Étape 8.4.1.3.1.2
Multipliez par .
Étape 8.4.1.3.1.3
Multipliez par .
Étape 8.4.1.3.1.4
Multipliez par .
Étape 8.4.1.3.2
Additionnez et .
Étape 8.4.1.4
Appliquez la propriété distributive.
Étape 8.4.1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.5.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 8.4.1.5.2
Multipliez par .
Étape 8.4.1.6
Réécrivez comme .
Étape 8.4.1.7
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.7.1
Appliquez la propriété distributive.
Étape 8.4.1.7.2
Appliquez la propriété distributive.
Étape 8.4.1.7.3
Appliquez la propriété distributive.
Étape 8.4.1.8
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.8.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.8.1.1
Multipliez par .
Étape 8.4.1.8.1.2
Multipliez par .
Étape 8.4.1.8.1.3
Multipliez par .
Étape 8.4.1.8.1.4
Multipliez par .
Étape 8.4.1.8.2
Additionnez et .
Étape 8.4.1.9
Appliquez la propriété distributive.
Étape 8.4.1.10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.10.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.10.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.10.1.1.1
Élevez à la puissance .
Étape 8.4.1.10.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 8.4.1.10.1.2
Additionnez et .
Étape 8.4.1.10.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 8.4.1.10.3
Multipliez par .
Étape 8.4.1.11
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.1.11.1
Déplacez .
Étape 8.4.1.11.2
Multipliez par .
Étape 8.4.2
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 8.4.2.1
Déplacez .
Étape 8.4.2.2
Déplacez .