Calcul infinitésimal Exemples

Résoudre l''équation différentielle x^2ydy-ydx=0
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Annulez le facteur commun.
Étape 3.1.2
Réécrivez l’expression.
Étape 3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Annulez le facteur commun.
Étape 3.2.3
Réécrivez l’expression.
Étape 4
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Appliquez la règle de la constante.
Étape 4.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 4.3.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.1.2.2
Multipliez par .
Étape 4.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4.3.3
Réécrivez comme .
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .