Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.3
Différenciez.
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3
Additionnez et .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.6
Multipliez par .
Étape 1.3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.8
Multipliez par .
Étape 1.4
Additionnez et .
Étape 1.4.1
Remettez dans l’ordre et .
Étape 1.4.2
Additionnez et .
Étape 2
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Différenciez.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Soustrayez de .
Étape 3
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme le côté gauche n’est pas égal au côté droit, l’équation n’est pas une identité.
n’est pas une identité.
n’est pas une identité.
Étape 4
Étape 4.1
Remplacez par .
Étape 4.2
Remplacez par .
Étape 4.3
Remplacez par .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez le numérateur.
Étape 4.3.2.1
Factorisez à partir de .
Étape 4.3.2.1.1
Remettez dans l’ordre et .
Étape 4.3.2.1.2
Réécrivez comme .
Étape 4.3.2.1.3
Factorisez à partir de .
Étape 4.3.2.2
Additionnez et .
Étape 4.3.2.3
Factorisez à partir de .
Étape 4.3.2.3.1
Factorisez à partir de .
Étape 4.3.2.3.2
Factorisez à partir de .
Étape 4.3.2.3.3
Factorisez à partir de .
Étape 4.3.2.4
Multipliez par .
Étape 4.3.3
Annulez le facteur commun à et .
Étape 4.3.3.1
Remettez les termes dans l’ordre.
Étape 4.3.3.2
Annulez le facteur commun.
Étape 4.3.3.3
Réécrivez l’expression.
Étape 4.3.4
Remplacez par .
Étape 4.4
Déterminez le facteur d’intégration .
Étape 5
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.3
Multipliez par .
Étape 5.4
L’intégrale de par rapport à est .
Étape 5.5
Simplifiez
Étape 5.6
Simplifiez chaque terme.
Étape 5.6.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.6.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.6.3
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 5.6.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Annulez le facteur commun de .
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Annulez le facteur commun.
Étape 6.2.3
Réécrivez l’expression.
Étape 6.3
Multipliez par .
Étape 6.4
Multipliez par .
Étape 6.5
Multipliez par .
Étape 7
Définissez égal à l’intégrale de .
Étape 8
Étape 8.1
Divisez la fraction en plusieurs fractions.
Étape 8.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8.3
Annulez le facteur commun de .
Étape 8.3.1
Annulez le facteur commun.
Étape 8.3.2
Divisez par .
Étape 8.4
Appliquez la règle de la constante.
Étape 8.5
Associez et .
Étape 8.6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8.7
Simplifiez
Étape 9
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 10
Définissez .
Étape 11
Étape 11.1
Différenciez par rapport à .
Étape 11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 11.3
Évaluez .
Étape 11.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.3.2
Réécrivez comme .
Étape 11.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.5
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 11.6
Simplifiez
Étape 11.6.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 11.6.2
Associez des termes.
Étape 11.6.2.1
Associez et .
Étape 11.6.2.2
Additionnez et .
Étape 11.6.3
Remettez les termes dans l’ordre.
Étape 12
Étape 12.1
Résolvez .
Étape 12.1.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Étape 12.1.1.1
Soustrayez des deux côtés de l’équation.
Étape 12.1.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.1.1.3
Simplifiez chaque terme.
Étape 12.1.1.3.1
Appliquez la propriété distributive.
Étape 12.1.1.3.2
Multipliez par .
Étape 12.1.1.3.3
Multipliez .
Étape 12.1.1.3.3.1
Multipliez par .
Étape 12.1.1.3.3.2
Multipliez par .
Étape 12.1.1.4
Associez les termes opposés dans .
Étape 12.1.1.4.1
Additionnez et .
Étape 12.1.1.4.2
Additionnez et .
Étape 12.1.1.5
Simplifiez chaque terme.
Étape 12.1.1.5.1
Annulez le facteur commun à et .
Étape 12.1.1.5.1.1
Factorisez à partir de .
Étape 12.1.1.5.1.2
Annulez les facteurs communs.
Étape 12.1.1.5.1.2.1
Factorisez à partir de .
Étape 12.1.1.5.1.2.2
Annulez le facteur commun.
Étape 12.1.1.5.1.2.3
Réécrivez l’expression.
Étape 12.1.1.5.2
Placez le signe moins devant la fraction.
Étape 12.1.2
Ajoutez aux deux côtés de l’équation.
Étape 13
Étape 13.1
Intégrez les deux côtés de .
Étape 13.2
Évaluez .
Étape 13.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.4
L’intégrale de par rapport à est .
Étape 13.5
Simplifiez
Étape 14
Remplacez par dans .
Étape 15
Étape 15.1
Associez et .
Étape 15.2
Simplifiez en déplaçant dans le logarithme.
Étape 15.3
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.