Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Simplifiez la réponse.
Étape 2.2.3.1
Réécrivez comme .
Étape 2.2.3.2
Associez et .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Étape 2.3.3.2.1
Associez et .
Étape 2.3.3.2.2
Placez le signe moins devant la fraction.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Associez.
Étape 3.2.1.1.3
Annulez le facteur commun de .
Étape 3.2.1.1.3.1
Annulez le facteur commun.
Étape 3.2.1.1.3.2
Réécrivez l’expression.
Étape 3.2.1.1.4
Annulez le facteur commun de .
Étape 3.2.1.1.4.1
Annulez le facteur commun.
Étape 3.2.1.1.4.2
Divisez par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Simplifiez chaque terme.
Étape 3.2.2.1.1.1
Associez et .
Étape 3.2.2.1.1.2
Déplacez à gauche de .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Multipliez .
Étape 3.2.2.1.3.1
Multipliez par .
Étape 3.2.2.1.3.2
Multipliez par .
Étape 3.2.2.1.3.3
Multipliez par .
Étape 3.2.2.1.4
Associez et .
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Simplifiez .
Étape 3.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.2
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.4.2.1
Multipliez par .
Étape 3.4.2.2
Multipliez par .
Étape 3.4.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.4
Simplifiez le numérateur.
Étape 3.4.4.1
Factorisez à partir de .
Étape 3.4.4.1.1
Factorisez à partir de .
Étape 3.4.4.1.2
Factorisez à partir de .
Étape 3.4.4.1.3
Factorisez à partir de .
Étape 3.4.4.2
Déplacez à gauche de .
Étape 3.4.5
Réécrivez comme .
Étape 3.4.6
Multipliez par .
Étape 3.4.7
Associez et simplifiez le dénominateur.
Étape 3.4.7.1
Multipliez par .
Étape 3.4.7.2
Élevez à la puissance .
Étape 3.4.7.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.7.4
Additionnez et .
Étape 3.4.7.5
Réécrivez comme .
Étape 3.4.7.5.1
Utilisez pour réécrire comme .
Étape 3.4.7.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.7.5.3
Associez et .
Étape 3.4.7.5.4
Annulez le facteur commun de .
Étape 3.4.7.5.4.1
Annulez le facteur commun.
Étape 3.4.7.5.4.2
Réécrivez l’expression.
Étape 3.4.7.5.5
Évaluez l’exposant.
Étape 3.4.8
Simplifiez le numérateur.
Étape 3.4.8.1
Réécrivez comme .
Étape 3.4.8.2
Élevez à la puissance .
Étape 3.4.9
Simplifiez le numérateur.
Étape 3.4.9.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 3.4.9.2
Multipliez par .
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.