Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Résolvez .
Étape 1.1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.1.2.1
Divisez chaque terme dans par .
Étape 1.1.2.2
Simplifiez le côté gauche.
Étape 1.1.2.2.1
Annulez le facteur commun de .
Étape 1.1.2.2.1.1
Annulez le facteur commun.
Étape 1.1.2.2.1.2
Divisez par .
Étape 1.1.2.3
Simplifiez le côté droit.
Étape 1.1.2.3.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.1.2.3.1.2
Multipliez .
Étape 1.1.2.3.1.2.1
Multipliez par .
Étape 1.1.2.3.1.2.2
Élevez à la puissance .
Étape 1.1.2.3.1.2.3
Élevez à la puissance .
Étape 1.1.2.3.1.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.3.1.2.5
Additionnez et .
Étape 1.2
Factorisez.
Étape 1.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.2
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 1.2.2.1
Multipliez par .
Étape 1.2.2.2
Élevez à la puissance .
Étape 1.2.2.3
Élevez à la puissance .
Étape 1.2.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.2.5
Additionnez et .
Étape 1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.4
Factorisez à partir de .
Étape 1.2.4.1
Élevez à la puissance .
Étape 1.2.4.2
Factorisez à partir de .
Étape 1.2.4.3
Factorisez à partir de .
Étape 1.2.4.4
Factorisez à partir de .
Étape 1.2.4.5
Multipliez par .
Étape 1.3
Regroupez des facteurs.
Étape 1.4
Multipliez les deux côtés par .
Étape 1.5
Annulez le facteur commun de .
Étape 1.5.1
Annulez le facteur commun.
Étape 1.5.2
Réécrivez l’expression.
Étape 1.6
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Appliquez les règles de base des exposants.
Étape 2.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.1.2
Multipliez les exposants dans .
Étape 2.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.2
Multipliez .
Étape 2.3.3
Simplifiez
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Multipliez par en additionnant les exposants.
Étape 2.3.3.2.1
Multipliez par .
Étape 2.3.3.2.1.1
Élevez à la puissance .
Étape 2.3.3.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.3.2.2
Soustrayez de .
Étape 2.3.4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
L’intégrale de par rapport à est .
Étape 2.3.7
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.2
Utilisez la propriété du quotient des logarithmes, .
Étape 3.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.5
Résolvez .
Étape 3.5.1
Réécrivez l’équation comme .
Étape 3.5.2
Multipliez les deux côtés par .
Étape 3.5.3
Simplifiez le côté gauche.
Étape 3.5.3.1
Annulez le facteur commun de .
Étape 3.5.3.1.1
Annulez le facteur commun.
Étape 3.5.3.1.2
Réécrivez l’expression.
Étape 3.5.4
Résolvez .
Étape 3.5.4.1
Remettez les facteurs dans l’ordre dans .
Étape 3.5.4.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4
Étape 4.1
Réécrivez comme .
Étape 4.2
Remettez dans l’ordre et .
Étape 4.3
Combinez des constantes avec le plus ou le moins.