Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Annulez le facteur commun.
Étape 1.2.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Laissez . Puis . Réécrivez avec et .
Étape 2.2.1.1
Laissez . Déterminez .
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Appliquez les règles de base des exposants.
Étape 2.2.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.2.2
Multipliez les exposants dans .
Étape 2.2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2.2
Multipliez par .
Étape 2.2.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.4
Réécrivez comme .
Étape 2.2.5
Remplacez toutes les occurrences de par .
Étape 2.3
Comme la dérivée de est , l’intégrale de est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 3.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.1.2
Supprimez les parenthèses.
Étape 3.1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 3.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 3.2.1
Multipliez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.2
Annulez le facteur commun.
Étape 3.2.2.1.3
Réécrivez l’expression.
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Simplifiez chaque terme.
Étape 3.2.3.1.1
Appliquez la propriété distributive.
Étape 3.2.3.1.2
Déplacez à gauche de .
Étape 3.2.3.1.3
Appliquez la propriété distributive.
Étape 3.2.3.1.4
Déplacez à gauche de .
Étape 3.2.3.2
Remettez les facteurs dans l’ordre dans .
Étape 3.3
Résolvez l’équation.
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.2.2
Soustrayez des deux côtés de l’équation.
Étape 3.3.3
Factorisez à partir de .
Étape 3.3.3.1
Factorisez à partir de .
Étape 3.3.3.2
Factorisez à partir de .
Étape 3.3.3.3
Factorisez à partir de .
Étape 3.3.4
Divisez chaque terme dans par et simplifiez.
Étape 3.3.4.1
Divisez chaque terme dans par .
Étape 3.3.4.2
Simplifiez le côté gauche.
Étape 3.3.4.2.1
Annulez le facteur commun de .
Étape 3.3.4.2.1.1
Annulez le facteur commun.
Étape 3.3.4.2.1.2
Divisez par .
Étape 3.3.4.3
Simplifiez le côté droit.
Étape 3.3.4.3.1
Simplifiez les termes.
Étape 3.3.4.3.1.1
Simplifiez chaque terme.
Étape 3.3.4.3.1.1.1
Placez le signe moins devant la fraction.
Étape 3.3.4.3.1.1.2
Placez le signe moins devant la fraction.
Étape 3.3.4.3.1.1.3
Placez le signe moins devant la fraction.
Étape 3.3.4.3.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.4.3.1.3
Simplifiez chaque terme.
Étape 3.3.4.3.1.3.1
Factorisez à partir de .
Étape 3.3.4.3.1.3.1.1
Réécrivez comme .
Étape 3.3.4.3.1.3.1.2
Factorisez à partir de .
Étape 3.3.4.3.1.3.1.3
Factorisez à partir de .
Étape 3.3.4.3.1.3.1.4
Réécrivez comme .
Étape 3.3.4.3.1.3.2
Placez le signe moins devant la fraction.
Étape 3.3.4.3.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.4.3.2
Simplifiez le numérateur.
Étape 3.3.4.3.2.1
Appliquez la propriété distributive.
Étape 3.3.4.3.2.2
Multipliez par .
Étape 3.3.4.3.2.3
Multipliez par .
Étape 3.3.4.3.3
Simplifiez en factorisant.
Étape 3.3.4.3.3.1
Réécrivez comme .
Étape 3.3.4.3.3.2
Factorisez à partir de .
Étape 3.3.4.3.3.3
Factorisez à partir de .
Étape 3.3.4.3.3.4
Factorisez à partir de .
Étape 3.3.4.3.3.5
Factorisez à partir de .
Étape 3.3.4.3.3.6
Placez le signe moins devant la fraction.
Étape 4
Simplifiez la constante d’intégration.
Étape 5
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 6
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Factorisez chaque terme.
Étape 6.2.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la tangente est négative dans le deuxième quadrant.
Étape 6.2.2
La valeur exacte de est .
Étape 6.2.3
Multipliez .
Étape 6.2.3.1
Multipliez par .
Étape 6.2.3.2
Multipliez par .
Étape 6.2.4
Additionnez et .
Étape 6.2.5
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la tangente est négative dans le deuxième quadrant.
Étape 6.2.6
La valeur exacte de est .
Étape 6.2.7
Multipliez par .
Étape 6.2.8
Additionnez et .
Étape 6.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 6.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 6.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 6.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 6.4.1
Multipliez chaque terme dans par .
Étape 6.4.2
Simplifiez le côté gauche.
Étape 6.4.2.1
Annulez le facteur commun de .
Étape 6.4.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.4.2.1.2
Annulez le facteur commun.
Étape 6.4.2.1.3
Réécrivez l’expression.
Étape 6.4.2.2
Appliquez la propriété distributive.
Étape 6.4.2.3
Multipliez par .
Étape 6.5
Résolvez l’équation.
Étape 6.5.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 6.5.1.1
Ajoutez aux deux côtés de l’équation.
Étape 6.5.1.2
Additionnez et .
Étape 6.5.2
Ajoutez aux deux côtés de l’équation.
Étape 6.5.3
Divisez chaque terme dans par et simplifiez.
Étape 6.5.3.1
Divisez chaque terme dans par .
Étape 6.5.3.2
Simplifiez le côté gauche.
Étape 6.5.3.2.1
Annulez le facteur commun de .
Étape 6.5.3.2.1.1
Annulez le facteur commun.
Étape 6.5.3.2.1.2
Divisez par .
Étape 7
Étape 7.1
Remplacez par .
Étape 7.2
Multipliez le numérateur et le dénominateur de la fraction par .
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Associez.
Étape 7.3
Appliquez la propriété distributive.
Étape 7.4
Annulez le facteur commun de .
Étape 7.4.1
Annulez le facteur commun.
Étape 7.4.2
Réécrivez l’expression.
Étape 7.5
Simplifiez le numérateur.
Étape 7.5.1
Multipliez par .
Étape 7.5.2
Multipliez par .
Étape 7.5.3
Additionnez et .
Étape 7.6
Factorisez à partir de .
Étape 7.6.1
Factorisez à partir de .
Étape 7.6.2
Factorisez à partir de .
Étape 7.6.3
Factorisez à partir de .