Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Factorisez à partir de .
Étape 1.2
Remettez dans l’ordre et .
Étape 2
Étape 2.1
Définissez l’intégration.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Retirez la constante d’intégration.
Étape 2.4
L’élévation à une puissance et log sont des fonctions inverses.
Étape 3
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Simplifiez chaque terme.
Étape 3.2.1
Associez et .
Étape 3.2.2
Annulez le facteur commun de .
Étape 3.2.2.1
Annulez le facteur commun.
Étape 3.2.2.2
Réécrivez l’expression.
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Étape 7.1
Laissez . Alors , donc . Réécrivez avec et .
Étape 7.1.1
Laissez . Déterminez .
Étape 7.1.1.1
Différenciez .
Étape 7.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 7.1.2
Réécrivez le problème en utilisant et .
Étape 7.2
Associez et .
Étape 7.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.4
L’intégrale de par rapport à est .
Étape 7.5
Simplifiez
Étape 7.5.1
Simplifiez
Étape 7.5.2
Associez et .
Étape 7.6
Remplacez toutes les occurrences de par .
Étape 7.7
Remettez les termes dans l’ordre.
Étape 8
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Étape 8.2.1
Annulez le facteur commun de .
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Étape 8.3.1
Simplifiez chaque terme.
Étape 8.3.1.1
Associez et .
Étape 8.3.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.3.1.3
Multipliez par .
Étape 8.3.1.4
Déplacez à gauche de .