Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dt) = square root of t , y(1)=1
,
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Utilisez pour réécrire comme .
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2
Multipliez par .
Étape 4.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.3.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.4
Soustrayez de .
Étape 5
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez par .
Étape 5.2
Associez et .