Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=-3x^2e^(-x^3)
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Différenciez .
Étape 2.3.2.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3.2.1.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.2.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.2.1.3.3
Multipliez par .
Étape 2.3.2.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.4.1
Réorganisez les facteurs de .
Étape 2.3.2.1.4.2
Remettez les facteurs dans l’ordre dans .
Étape 2.3.2.2
Réécrivez le problème en utilisant et .
Étape 2.3.3
Placez le signe moins devant la fraction.
Étape 2.3.4
Appliquez la règle de la constante.
Étape 2.3.5
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Simplifiez
Étape 2.3.5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.1
Associez et .
Étape 2.3.5.2.2
Multipliez par .
Étape 2.3.5.2.3
Associez et .
Étape 2.3.5.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.4.1
Annulez le facteur commun.
Étape 2.3.5.2.4.2
Divisez par .
Étape 2.3.5.3
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .