Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Différenciez.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Associez des termes.
Étape 2.5.1
Additionnez et .
Étape 2.5.2
Additionnez et .
Étape 3
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme le côté gauche n’est pas égal au côté droit, l’équation n’est pas une identité.
n’est pas une identité.
n’est pas une identité.
Étape 4
Étape 4.1
Remplacez par .
Étape 4.2
Remplacez par .
Étape 4.3
Remplacez par .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Remplacez par .
Étape 4.4
Déterminez le facteur d’intégration .
Étape 5
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
L’intégrale de par rapport à est .
Étape 5.3
Simplifiez
Étape 5.4
Simplifiez chaque terme.
Étape 5.4.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.4.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.4.3
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par en additionnant les exposants.
Étape 6.2.1
Multipliez par .
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 6.2.2
Additionnez et .
Étape 6.3
Multipliez par .
Étape 6.4
Appliquez la propriété distributive.
Étape 6.5
Multipliez par en additionnant les exposants.
Étape 6.5.1
Déplacez .
Étape 6.5.2
Multipliez par .
Étape 6.5.2.1
Élevez à la puissance .
Étape 6.5.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 6.5.3
Additionnez et .
Étape 7
Définissez égal à l’intégrale de .
Étape 8
Étape 8.1
Appliquez la règle de la constante.
Étape 9
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 10
Définissez .
Étape 11
Étape 11.1
Différenciez par rapport à .
Étape 11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 11.3
Évaluez .
Étape 11.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.3.3
Déplacez à gauche de .
Étape 11.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 11.5
Remettez les termes dans l’ordre.
Étape 12
Étape 12.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 12.1.1
Soustrayez des deux côtés de l’équation.
Étape 12.1.2
Associez les termes opposés dans .
Étape 12.1.2.1
Réorganisez les facteurs dans les termes et .
Étape 12.1.2.2
Soustrayez de .
Étape 12.1.2.3
Additionnez et .
Étape 13
Étape 13.1
Intégrez les deux côtés de .
Étape 13.2
Évaluez .
Étape 13.3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 13.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13.8
Simplifiez
Étape 13.9
Simplifiez
Étape 13.9.1
Associez et .
Étape 13.9.2
Annulez le facteur commun de .
Étape 13.9.2.1
Annulez le facteur commun.
Étape 13.9.2.2
Réécrivez l’expression.
Étape 13.9.3
Multipliez par .
Étape 14
Remplacez par dans .
Étape 15
Associez et .