Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Divisez par .
Étape 1.3
Annulez le facteur commun de .
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Divisez par .
Étape 1.4
Factorisez à partir de .
Étape 1.5
Remettez dans l’ordre et .
Étape 2
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Étape 2.2.1
Divisez par .
Étape 2.2.1.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
- | + |
Étape 2.2.1.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
- | + |
Étape 2.2.1.3
Multipliez le nouveau terme du quotient par le diviseur.
- | + | ||||||
+ | - |
Étape 2.2.1.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
- | + | ||||||
- | + |
Étape 2.2.1.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
- | + | ||||||
- | + | ||||||
+ |
Étape 2.2.1.6
La réponse finale est le quotient plus le reste sur le diviseur.
Étape 2.2.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.3
Appliquez la règle de la constante.
Étape 2.2.4
Laissez . Puis . Réécrivez avec et .
Étape 2.2.4.1
Laissez . Déterminez .
Étape 2.2.4.1.1
Différenciez .
Étape 2.2.4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.4.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4.1.5
Additionnez et .
Étape 2.2.4.2
Réécrivez le problème en utilisant et .
Étape 2.2.5
L’intégrale de par rapport à est .
Étape 2.2.6
Simplifiez
Étape 2.2.7
Remplacez toutes les occurrences de par .
Étape 2.3
Retirez la constante d’intégration.
Étape 3
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Simplifiez chaque terme.
Étape 3.2.1
Associez et .
Étape 3.2.2
Associez et .
Étape 3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.5
Simplifiez le numérateur.
Étape 3.5.1
Factorisez à partir de .
Étape 3.5.1.1
Factorisez à partir de .
Étape 3.5.1.2
Factorisez à partir de .
Étape 3.5.1.3
Factorisez à partir de .
Étape 3.5.2
Appliquez la propriété distributive.
Étape 3.5.3
Déplacez à gauche de .
Étape 3.5.4
Réécrivez comme .
Étape 3.6
Multipliez par en additionnant les exposants.
Étape 3.6.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.6.2
Associez les termes opposés dans .
Étape 3.6.2.1
Soustrayez de .
Étape 3.6.2.2
Additionnez et .
Étape 3.7
L’élévation à une puissance et log sont des fonctions inverses.
Étape 3.8
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Étape 7.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7.3
Appliquez la règle de la constante.
Étape 7.4
Simplifiez
Étape 8
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Étape 8.2.1
Annulez le facteur commun de .
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Étape 8.3.1
Simplifiez chaque terme.
Étape 8.3.1.1
Associez et .
Étape 8.3.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.3.1.3
Associez.
Étape 8.3.1.4
Multipliez par .
Étape 8.3.1.5
Placez le signe moins devant la fraction.