Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Appliquez la règle de la constante.
Étape 2.2.4
Simplifiez
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Réécrivez comme .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Associez et .
Étape 3.2
Associez et .
Étape 3.3
Déplacez toutes les expressions du côté gauche de l’équation.
Étape 3.3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.3.2
Soustrayez des deux côtés de l’équation.
Étape 3.4
Multipliez par le plus petit dénominateur commun , puis simplifiez.
Étape 3.4.1
Appliquez la propriété distributive.
Étape 3.4.2
Simplifiez
Étape 3.4.2.1
Annulez le facteur commun de .
Étape 3.4.2.1.1
Annulez le facteur commun.
Étape 3.4.2.1.2
Réécrivez l’expression.
Étape 3.4.2.2
Multipliez par .
Étape 3.4.2.3
Annulez le facteur commun de .
Étape 3.4.2.3.1
Annulez le facteur commun.
Étape 3.4.2.3.2
Réécrivez l’expression.
Étape 3.4.2.4
Multipliez par .
Étape 3.4.3
Déplacez .
Étape 3.4.4
Remettez dans l’ordre et .
Étape 3.5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.7
Simplifiez
Étape 3.7.1
Simplifiez le numérateur.
Étape 3.7.1.1
Factorisez à partir de .
Étape 3.7.1.1.1
Factorisez à partir de .
Étape 3.7.1.1.2
Factorisez à partir de .
Étape 3.7.1.1.3
Factorisez à partir de .
Étape 3.7.1.2
Multipliez par .
Étape 3.7.1.3
Réécrivez comme .
Étape 3.7.1.3.1
Factorisez à partir de .
Étape 3.7.1.3.2
Réécrivez comme .
Étape 3.7.1.3.3
Ajoutez des parenthèses.
Étape 3.7.1.4
Extrayez les termes de sous le radical.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.8
La réponse finale est la combinaison des deux solutions.
Étape 4
Simplifiez la constante d’intégration.