Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=15/((3x+1)^2e^(2y+6))
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Regroupez des facteurs.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Associez.
Étape 1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Factorisez à partir de .
Étape 1.3.2.2
Annulez le facteur commun.
Étape 1.3.2.3
Réécrivez l’expression.
Étape 1.3.3
Multipliez par .
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.1.3.3
Multipliez par .
Étape 2.2.1.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.4.2
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Associez et .
Étape 2.2.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.4
L’intégrale de par rapport à est .
Étape 2.2.5
Simplifiez
Étape 2.2.6
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Différenciez .
Étape 2.3.2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.2.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.2.1.3.3
Multipliez par .
Étape 2.3.2.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2.1.4.2
Additionnez et .
Étape 2.3.2.2
Réécrivez le problème en utilisant et .
Étape 2.3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Déplacez à gauche de .
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.1
Associez et .
Étape 2.3.5.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.2.1
Factorisez à partir de .
Étape 2.3.5.1.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1.2.2.1
Factorisez à partir de .
Étape 2.3.5.1.2.2.2
Annulez le facteur commun.
Étape 2.3.5.1.2.2.3
Réécrivez l’expression.
Étape 2.3.5.1.2.2.4
Divisez par .
Étape 2.3.5.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.5.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.5.2.2.2
Multipliez par .
Étape 2.3.6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.1
Réécrivez comme .
Étape 2.3.7.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.2.1
Multipliez par .
Étape 2.3.7.2.2
Associez et .
Étape 2.3.7.2.3
Placez le signe moins devant la fraction.
Étape 2.3.8
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.1
Appliquez la propriété distributive.
Étape 3.2.2.1.3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2.1.3.3
Multipliez par .
Étape 3.2.2.1.4
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.4.1
Associez et .
Étape 3.2.2.1.4.2
Réécrivez comme .
Étape 3.2.2.1.4.3
Factorisez à partir de .
Étape 3.2.2.1.4.4
Factorisez à partir de .
Étape 3.2.2.1.4.5
Factorisez à partir de .
Étape 3.2.2.1.4.6
Factorisez à partir de .
Étape 3.2.2.1.4.7
Placez le signe moins devant la fraction.
Étape 3.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.4
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Développez en déplaçant hors du logarithme.
Étape 3.4.2
Le logarithme naturel de est .
Étape 3.4.3
Multipliez par .
Étape 3.5
Soustrayez des deux côtés de l’équation.
Étape 3.6
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Divisez chaque terme dans par .
Étape 3.6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.2.1.1
Annulez le facteur commun.
Étape 3.6.2.1.2
Divisez par .
Étape 3.6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.1
Divisez par .
Étape 4
Simplifiez la constante d’intégration.