Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Réécrivez.
Étape 2
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.3
Multipliez par .
Étape 2.5
Remettez les termes dans l’ordre.
Étape 3
Étape 3.1
Différenciez par rapport à .
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Évaluez .
Étape 3.3.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.3.2
La dérivée de par rapport à est .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.4
Multipliez par .
Étape 3.4
Différenciez en utilisant la règle de la constante.
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
Additionnez et .
Étape 4
Étape 4.1
Remplacez par et par .
Étape 4.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 5
Définissez égal à l’intégrale de .
Étape 6
Étape 6.1
Appliquez la règle de la constante.
Étape 7
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 8
Définissez .
Étape 9
Étape 9.1
Différenciez par rapport à .
Étape 9.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 9.3
Évaluez .
Étape 9.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 9.3.3
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 9.3.4
La dérivée de par rapport à est .
Étape 9.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 9.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.3.7
Multipliez par .
Étape 9.3.8
Additionnez et .
Étape 9.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 9.5
Simplifiez
Étape 9.5.1
Appliquez la propriété distributive.
Étape 9.5.2
Remettez les termes dans l’ordre.
Étape 10
Étape 10.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 10.1.1
Soustrayez des deux côtés de l’équation.
Étape 10.1.2
Soustrayez des deux côtés de l’équation.
Étape 10.1.3
Associez les termes opposés dans .
Étape 10.1.3.1
Soustrayez de .
Étape 10.1.3.2
Additionnez et .
Étape 10.1.3.3
Soustrayez de .
Étape 11
Étape 11.1
Intégrez les deux côtés de .
Étape 11.2
Évaluez .
Étape 11.3
L’intégrale de par rapport à est .
Étape 11.4
Additionnez et .
Étape 12
Remplacez par dans .
Étape 13
Étape 13.1
Simplifiez chaque terme.
Étape 13.1.1
Appliquez la propriété distributive.
Étape 13.1.2
Multipliez par .
Étape 13.2
Remettez les facteurs dans l’ordre dans .