Calcul infinitésimal Exemples

Résoudre l''équation différentielle e^x(dy)/(dx)+3e^xy=2
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Divisez par .
Étape 1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Divisez par .
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Retirez la constante d’intégration.
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3
Associez et .
Étape 3.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Multipliez par .
Étape 3.4.2.2
Annulez le facteur commun.
Étape 3.4.2.3
Réécrivez l’expression.
Étape 3.4.2.4
Divisez par .
Étape 3.5
Déplacez à gauche de .
Étape 3.6
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Différenciez .
Étape 7.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.2
Réécrivez le problème en utilisant et .
Étape 7.3
Associez et .
Étape 7.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Associez et .
Étape 7.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.2.1
Annulez le facteur commun.
Étape 7.5.2.2
Réécrivez l’expression.
Étape 7.5.3
Multipliez par .
Étape 7.6
L’intégrale de par rapport à est .
Étape 7.7
Remplacez toutes les occurrences de par .
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Factorisez à partir de .
Étape 8.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.2.1
Multipliez par .
Étape 8.3.1.2.2
Annulez le facteur commun.
Étape 8.3.1.2.3
Réécrivez l’expression.
Étape 8.3.1.2.4
Divisez par .