Calcul infinitésimal Exemples

Résoudre l''équation différentielle x+1(dy)/(dx)=y+10
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez l’équation comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.1.3
Remettez les termes dans l’ordre.
Étape 1.2
Multipliez par .
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Retirez la constante d’intégration.
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.2
Déplacez à gauche de .
Étape 3.4
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.3
Intégrez par parties en utilisant la formule , où et .
Étape 7.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Multipliez par .
Étape 7.5.2
Multipliez par .
Étape 7.6
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.6.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.6.1.1
Différenciez .
Étape 7.6.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.6.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.6.1.4
Multipliez par .
Étape 7.6.2
Réécrivez le problème en utilisant et .
Étape 7.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.8
L’intégrale de par rapport à est .
Étape 7.9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.10
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.10.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.10.1.1
Différenciez .
Étape 7.10.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.10.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.10.1.4
Multipliez par .
Étape 7.10.2
Réécrivez le problème en utilisant et .
Étape 7.11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.12
Multipliez par .
Étape 7.13
L’intégrale de par rapport à est .
Étape 7.14
Simplifiez
Étape 7.15
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 7.15.1
Remplacez toutes les occurrences de par .
Étape 7.15.2
Remplacez toutes les occurrences de par .
Étape 7.16
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.16.1
Appliquez la propriété distributive.
Étape 7.16.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.16.2.1
Multipliez par .
Étape 7.16.2.2
Multipliez par .
Étape 7.16.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.16.3.1
Multipliez par .
Étape 7.16.3.2
Multipliez par .
Étape 7.16.4
Soustrayez de .
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1.1
Annulez le facteur commun.
Étape 8.3.1.1.2
Divisez par .
Étape 8.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.2.1
Annulez le facteur commun.
Étape 8.3.1.2.2
Divisez par .