Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Réécrivez comme .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Réécrivez comme .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.1.2.2
Factorisez à partir de .
Étape 3.2.1.1.2.3
Annulez le facteur commun.
Étape 3.2.1.1.2.4
Réécrivez l’expression.
Étape 3.2.1.1.3
Multipliez.
Étape 3.2.1.1.3.1
Multipliez par .
Étape 3.2.1.1.3.2
Multipliez par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Annulez le facteur commun de .
Étape 3.2.2.1.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.3.2
Factorisez à partir de .
Étape 3.2.2.1.3.3
Annulez le facteur commun.
Étape 3.2.2.1.3.4
Réécrivez l’expression.
Étape 3.2.2.1.4
Multipliez.
Étape 3.2.2.1.4.1
Multipliez par .
Étape 3.2.2.1.4.2
Multipliez par .
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.