Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Étape 1.1.2.1
Annulez le facteur commun de .
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.1.3
Simplifiez le côté droit.
Étape 1.1.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.1.3.2
Associez.
Étape 1.1.3.3
Multipliez par .
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Étape 1.4.1
Associez.
Étape 1.4.2
Associez.
Étape 1.4.3
Annulez le facteur commun de .
Étape 1.4.3.1
Annulez le facteur commun.
Étape 1.4.3.2
Réécrivez l’expression.
Étape 1.4.4
Annulez le facteur commun de .
Étape 1.4.4.1
Annulez le facteur commun.
Étape 1.4.4.2
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Simplifiez la réponse.
Étape 2.2.3.1
Réécrivez comme .
Étape 2.2.3.2
Simplifiez
Étape 2.2.3.2.1
Multipliez par .
Étape 2.2.3.2.2
Multipliez par .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Appliquez les règles de base des exposants.
Étape 2.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.1.2
Multipliez les exposants dans .
Étape 2.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Étape 2.3.3.2.1
Multipliez par .
Étape 2.3.3.2.2
Déplacez à gauche de .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Annulez le facteur commun de .
Étape 3.2.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.2.2
Factorisez à partir de .
Étape 3.2.2.1.2.3
Factorisez à partir de .
Étape 3.2.2.1.2.4
Annulez le facteur commun.
Étape 3.2.2.1.2.5
Réécrivez l’expression.
Étape 3.2.2.1.3
Associez et .
Étape 3.2.2.1.4
Simplifiez l’expression.
Étape 3.2.2.1.4.1
Multipliez par .
Étape 3.2.2.1.4.2
Placez le signe moins devant la fraction.
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Simplifiez .
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.1.1
Factorisez à partir de .
Étape 3.4.1.2
Factorisez à partir de .
Étape 3.4.1.3
Factorisez à partir de .
Étape 3.4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.4
Associez et .
Étape 3.4.5
Réécrivez comme .
Étape 3.4.5.1
Factorisez la puissance parfaite dans .
Étape 3.4.5.2
Factorisez la puissance parfaite dans .
Étape 3.4.5.3
Réorganisez la fraction .
Étape 3.4.6
Extrayez les termes de sous le radical.
Étape 3.4.7
Associez et .
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.