Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Inversez les côtés pour obtenir du côté gauche.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Réécrivez l’expression.
Étape 1.2.2.2
Annulez le facteur commun de .
Étape 1.2.2.2.1
Annulez le facteur commun.
Étape 1.2.2.2.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Annulez le facteur commun de .
Étape 1.2.3.1.1
Annulez le facteur commun.
Étape 1.2.3.1.2
Réécrivez l’expression.
Étape 1.2.3.2
Factorisez à partir de .
Étape 1.2.3.2.1
Élevez à la puissance .
Étape 1.2.3.2.2
Factorisez à partir de .
Étape 1.2.3.2.3
Factorisez à partir de .
Étape 1.2.3.2.4
Factorisez à partir de .
Étape 1.3
Regroupez des facteurs.
Étape 1.4
Multipliez les deux côtés par .
Étape 1.5
Simplifiez
Étape 1.5.1
Multipliez par .
Étape 1.5.2
Annulez le facteur commun de .
Étape 1.5.2.1
Annulez le facteur commun.
Étape 1.5.2.2
Réécrivez l’expression.
Étape 1.6
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.3.1.1
Laissez . Déterminez .
Étape 2.3.1.1.1
Différenciez .
Étape 2.3.1.1.2
Différenciez.
Étape 2.3.1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.3
Évaluez .
Étape 2.3.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.1.1.3.3
Multipliez par .
Étape 2.3.1.1.4
Soustrayez de .
Étape 2.3.1.2
Réécrivez le problème en utilisant et .
Étape 2.3.2
Simplifiez
Étape 2.3.2.1
Placez le signe moins devant la fraction.
Étape 2.3.2.2
Multipliez par .
Étape 2.3.2.3
Déplacez à gauche de .
Étape 2.3.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.3.7
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.2.1.3
Simplifiez les termes.
Étape 3.2.2.1.3.1
Associez et .
Étape 3.2.2.1.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.2.1.3.3
Annulez le facteur commun de .
Étape 3.2.2.1.3.3.1
Annulez le facteur commun.
Étape 3.2.2.1.3.3.2
Réécrivez l’expression.
Étape 3.2.2.1.4
Déplacez à gauche de .
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.