Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dA)/(dr)=Ab^2cos(br) , A(0)=b^3
,
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez l’équation comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Remettez les termes dans l’ordre.
Étape 1.2
Factorisez à partir de .
Étape 1.3
Remettez dans l’ordre et .
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Réécrivez.
Étape 2.2.2.1.2
Multipliez par .
Étape 2.2.2.2
Réécrivez le problème en utilisant et .
Étape 2.2.3
Associez et .
Étape 2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Associez et .
Étape 2.2.5.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.1
Factorisez à partir de .
Étape 2.2.5.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.2.2.1
Élevez à la puissance .
Étape 2.2.5.2.2.2
Factorisez à partir de .
Étape 2.2.5.2.2.3
Annulez le facteur commun.
Étape 2.2.5.2.2.4
Réécrivez l’expression.
Étape 2.2.5.2.2.5
Divisez par .
Étape 2.2.6
L’intégrale de par rapport à est .
Étape 2.2.7
Simplifiez
Étape 2.2.8
Remplacez toutes les occurrences de par .
Étape 2.3
Retirez la constante d’intégration.
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3
Multipliez par .
Étape 3.4
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
L’intégrale de par rapport à est .
Étape 7.2
Additionnez et .
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 9
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 10
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Multipliez les deux côtés par .
Étape 10.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1.1.1
Multipliez par .
Étape 10.2.1.1.2
La valeur exacte de est .
Étape 10.2.1.1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1.1.3.1
Multipliez par .
Étape 10.2.1.1.3.2
Multipliez par .
Étape 10.2.1.1.4
Tout ce qui est élevé à la puissance est .
Étape 10.2.1.1.5
Multipliez par .
Étape 10.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1.1
Annulez le facteur commun.
Étape 10.2.2.1.2
Réécrivez l’expression.
Étape 10.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 11
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez par .