Calcul infinitésimal Exemples

Résoudre l''équation différentielle DE(dy)/(dx)=cos(y)^2
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Supprimez les parenthèses inutiles.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Convertissez de à .
Étape 2.2.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.3
Comme la dérivée de est , l’intégrale de est .
Étape 2.2.4
Simplifiez
Étape 2.3
Appliquez la règle de la constante.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1
Annulez le facteur commun.
Étape 3.1.2.1.2
Réécrivez l’expression.
Étape 3.1.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.2.1
Annulez le facteur commun.
Étape 3.1.2.2.2
Divisez par .
Étape 3.2
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 4
Simplifiez la constante d’intégration.