Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(8x^3)/(3y^2) , y(0)=2
,
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Annulez le facteur commun.
Étape 1.2.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Multipliez par .
Étape 2.3.3.2.2
Multipliez par .
Étape 2.3.3.2.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.3.1
Factorisez à partir de .
Étape 2.3.3.2.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.3.2.1
Factorisez à partir de .
Étape 2.3.3.2.3.2.2
Annulez le facteur commun.
Étape 2.3.3.2.3.2.3
Réécrivez l’expression.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.1
Annulez le facteur commun.
Étape 3.2.2.1.3.2
Réécrivez l’expression.
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Simplifiez la constante d’intégration.
Étape 5
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 6.3
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Utilisez pour réécrire comme .
Étape 6.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1.2.1
Annulez le facteur commun.
Étape 6.3.2.1.1.2.2
Réécrivez l’expression.
Étape 6.3.2.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.2.1
L’élévation de à toute puissance positive produit .
Étape 6.3.2.1.2.2
Multipliez par .
Étape 6.3.2.1.3
Simplifiez en ajoutant des zéros.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.3.1
Additionnez et .
Étape 6.3.2.1.3.2
Simplifiez
Étape 6.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.1
Élevez à la puissance .
Étape 7
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez par .
Étape 7.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Factorisez à partir de .
Étape 7.2.2
Factorisez à partir de .
Étape 7.2.3
Factorisez à partir de .